); } else{ System.out.println("顾客["+this.id+"]进入厕所,没空位,排队"); } position.acquire(); System.out.println("顾客["+this.id+"]获得坑位"); Thread.sleep((int)(Math.random()*1000)); System.out.println("顾客["+this.id+"]使用完毕"); position.release(); } catch(Exception e){ e.printStackTrace(); }}public static void main(String args[]){ ExecutorService list=Executors.newCachedThreadPool(); Semaphore position=new Semaphore(2); for(int i=0;i<10;i++){ list.submit(new MySemaphore(i+1,position)); } list.shutdown(); position.acquireUninterruptibly(2); System.out.println("使用完毕,需要清扫了"); position.release(2);}} ReentrantLock一个可重入的互斥锁定 Lock,它具有与使用 synchronized 方法和语句所访问的隐式监视器锁定相同的一些基本行为和语义,但功能更强大。ReentrantLock 将由最近成功获得锁定,并且还没有释放该锁定的线程所拥有。当锁定没有被另一个线程所拥有时,调用 lock 的线程将成功获取该锁定并返回。如果当前线程已经拥有该锁定,此方法将立即返回。可以使用 isHeldByCurrentThread() 和 getHoldCount() 方法来检查此情况是否发生。此类的构造方法接受一个可选的公平参数。当设置为 true时,在多个线程的争用下,这些锁定倾向于将访问权授予等待时间最长的线程。否则此锁定将无法保证任何特定访问顺序。与采用默认设置(使用不公平锁定)相比,使用公平锁定的程序在许多线程访问时表现为很低的总体吞吐量(即速度很慢,常常极其慢),但是在获得锁定和保证锁定分配的均衡性时差异较小。不过要注意的是,公平锁定不能保证线程调度的公平性。因此,使用公平锁定的众多线程中的一员可能获得多倍的成功机会,这种情况发生在其他活动线程没有被处理并且目前并未持有锁定时。还要注意的是,未定时的 tryLock 方法并没有使用公平设置。因为即使其他线程正在等待,只要该锁定是可用的,此方法就可以获得成功。建议总是 立即实践,使用 try 块来调用 lock,在之前/之后的构造中,最典型的代码如下: class X { private final ReentrantLock lock = new ReentrantLock(); // ... public void m() { lock.lock(); // block until condition holds try { // ... method body } finally { lock.unlock() } }}我的例子:import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;import java.util.concurrent.locks.ReentrantLock;public class MyReentrantLock extends Thread{TestReentrantLock lock;private int id;public MyReentrantLock(int i,TestReentrantLock test){ this.id=i; this.lock=test;}public void run(){ lock.print(id);}public static void main(String args[]){ ExecutorService service=