根据应用的具体情况来决定应该使用哪种压缩格式。就个人而言,更趋向于使用最快的速度压缩,还是使用最优的空间压缩?一般来说,应该尝试不同的策略,并用具有代表性的数据集进行测试,从而找到最佳方法。对于那些大型的、没有边界的文件,如日志文件,有以下选项。
存储未压缩的文件。
使用支持分割机制的压缩格式,如bzip2。
在应用中将文件分割成几个大的数据块,然后使用任何一种支持的压缩格式单独压缩每个数据块(可不用考虑压缩格式是否支持分割)。在这里,需要选择数据块的大小使压缩后的数据块在大小上相当于HDFS的块。
使用支持压缩和分割的Sequence File(序列文件)。
对于大型文件,不要对整个文件使用不支持分割的压缩格式,因为这样会损失本地性优势,从而使降低MapReduce应用的性能。
在hadoop中使用lzo的压缩算法可以减小数据的大小和数据的磁盘读写时间,在HDFS中存储压缩数据,可以使集群能保存更多的数据,延长集群的使用寿命。不仅如此,由于mapreduce作业通常瓶颈都在IO上,存储压缩数据就意味这更少的IO操作,job运行更加的高效。
但是在hadoop上使用压缩也有两个比较麻烦的地方:第一,有些压缩格式不能被分块,并行的处理,比如gzip。第二,另外的一些压缩格式虽然支持分块处理,但是解压的过程非常的缓慢,使job的瓶颈转移到了cpu上,例如bzip2。
如果能够拥有一种压缩算法,即能够被分块,并行的处理,速度也非常的快,那就非常的理想。这种方式就是lzo。
lzo的压缩文件是由许多的小的blocks组成(约256K),使的hadoop的job可以根据block的划分来split job。不仅如此,lzo在设计时就考虑到了效率问题,它的解压速度是gzip的两倍,这就让它能够节省很多的磁盘读写,它的压缩比的不如gzip,大约压缩出来的文件比gzip压缩的大一半,但是这样仍然比没有经过压缩的文件要节省20%-50%的存储空间,这样就可以在效率上大大的提高job执行的速度。
hadoop下lzo配置文档参考http://www.tech126.com/hadoop-lzo/
如何在MapReduce中使用压缩
1.输入的文件的压缩
如果输入的文件是压缩过的,那么在被MapReduce读取时,它们会被自动解压,根据文件扩展名来决定应该使用哪一个压缩解码器。
2.MapReduce作业的输出的压缩
如果要压缩MapReduce作业的输出,请在作业配置文件中将mapred.output.compress属性设置为true。将mapred.output.compression.codec属性设置为自己打算使用的压缩编码/解码器的类名。
如果为输出使用了一系列文件,可以设置mapred.output.compression.type属性来控制压缩类型,默认为RECORD,它压缩单独的记录。将它改为BLOCK,则可以压缩一组记录。由于它有更好的压缩比,所以推荐使用。
3.map作业输出结果的压缩
即使MapReduce应用使用非压缩的数据来读取和写入,我们也可以受益于压缩map阶段的中间输出。因为map作业的输出会被写入磁盘并通过网络传输到reducer节点,所以如果使用LZO之类的快速压缩,能得到更好的性能,因为传输的数据量大大减少了。以下代码显示了启用rnap输出压缩和设置压缩格式的配置属性。
- conf.setCompressMapOutput(true);
- conf.setMapOutputCompressorClass(GzipCodec.class);
本地压缩库
考虑到性能,最好使用一个本地库(native library)来压缩和解压。例如,在一个测试中,使用本地gzip压缩库减少了解压时间50%,压缩时间大约减少了10%(与内置的Java实现相比较)。表4-4展示了Java和本地提供的每个压缩格式的实现。井不是所有的格式都有本地实现(例如bzip2压缩),而另一些则仅有本地实现(例如LZO)。
压缩格式 | Java实现 | 本地实现 |
DEFLATE | 是 | 是 |
gzip | 是 | 是 |
bzip2 | 是 | 否 |
LZO | 否 | 是 |
H