当数据来源于多表时的连接*作;这都消耗了磁盘I/O和CPU时间。
尤其在遇到下列情形时,我们要对基本表进行扩展设计:许多过程要频繁访问一个表、子集数据访问、重复计算和冗余数据,有时用户要求一些过程优先或低的响应时间。
如何避免这些不利因素呢?根据访问的频繁程度对相关表进行分割处理、存储冗余数据、存储衍生列、合并相关表处理,这些都是克服这些不利因素和优化系统运行的有效途径。
3.1 分割表或储存冗余数据
分割表分为水平分割表和垂直分割表两种。分割表增加了维护数据完整性的代价。
水平分割表:一种是当多个过程频繁访问数据表的不同行时,水平分割表,并消除新表中的冗余数据列;若个别过程要访问整个数据,则要用连接*作,这也无妨分割表;典型案例是电信话单按月分割存放。另一种是当主要过程要重复访问部分行时,最好将被重复访问的这些行单独形成子集表(冗余储存),这在不考虑磁盘空间开销时显得十分重要;但在分割表以后,增加了维护难度,要用触发器立即更新、或存储过程或应用代码批量更新,这也会增加额外的磁盘I/O开销。
垂直分割表(不破坏第三范式),一种是当多个过程频繁访问表的不同列时,可将表垂直分成几个表,减少磁盘I/O(每行的数据列少,每页存的数据行就多,相应占用的页就少),更新时不必考虑锁,没有冗余数据。缺点是要在插入或删除数据时要考虑数据的完整性,用存储过程维护。另一种是当主要过程反复访问部分列时,最好将这部分被频繁访问的列数据单独存为一个子集表(冗余储存),这在不考虑磁盘空间开销时显得十分重要;但这增加了重叠列的维护难度,要用触发器立即更新、或存储过程或应用代码批量更新,这也会增加额外的磁盘I/O开销。垂直分割表可以达到最大化利用Cache的目的。
总之,为主要过程分割表的方法适用于:各个过程需要表的不联结的子集,各个过程需要表的子集,访问频率高的主要过程不需要整表。在主要的、频繁访问的主表需要表的子集而其它主要频繁访问的过程需要整表时则产生冗余子集表。
注意,在分割表以后,要考虑重新建立索引。
3.2 存储衍生数据
对一些要做大量重复性计算的过程而言,若重复计算过程得到的结果相同(源列数据稳定,因此计算结果也不变),或计算牵扯多行数据需额外的磁盘I/O开销,或计算复杂需要大量的CPU时间,就考虑存储计算结果(冗余储存)。现予以分类说明:
若在一行内重复计算,就在表内增加列存储结果。但若参与计算的列被更新时,必须要用触发器更新这个新列。
若对表按类进行重复计算,就增加新表(一般而言,存放类和结果两列就可以了)存储相关结果。但若参与计算的列被更新时,就必须要用触发器立即更新、或存储过程或应用代码批量更新这个新表。
若对多行进行重复性计算(如排名次),就在表内增加列存储结果。但若参与计算的列被更新时,必须要用触发器或存储过程更新这个新列。
总之,存储冗余数据有利于加快访问速度;但违反了第三范式,这会增加维护数据完整性的代价,必须用触发器立即更新、或存储过程或应用代码批量更新,以维护数据的完整性。
3.3 消除昂贵结合
对于频繁同时访问多表的一些主要过程,考虑在主表内存储冗余数据,即存储冗余列或衍生列(它不依赖于主键),但破坏了第三范式,也增加了维护难度。在源表的相关列发生变化时,必须要用触发器或存储过程更新这个冗余列。当主要过程总同时访问两个表时可以合并表,这样可以减少磁盘I/O*作,但破坏了第三范式,也增加了维护难度。对父子表和1:1关系表合并方法不同:合并父子表后,产生冗余表;合并1:1关系表后,在表内产生冗余数据。
4 数据库对象的放置策略
数据库对象的放置策略是均匀地把数