上述多线程的服务器模型似乎完美的解决了为多个客户机提供问答服务的要求,但其实并不尽然。如果要同时响应成百上千路的连接请求,则无论多线程还是多进程都会严重占据系统资源,降低系统对外界响应效率,而线程与进程本身也更容易进入假死状态。
很多程序员可能会考虑使用“线程池”或“连接池”。“线程池”旨在减少创建和销毁线程的频率,其维持一定合理数量的线程,并让空闲的线程重新承担新的执行任务。“连接池”维持连接的缓存池,尽量重用已有的连接、减少创建和关闭连接的频率。这两种技术都可以很好的降低系统开销,都被广泛应用很多大型系统,如 websphere、tomcat 和各种数据库等。
但是,“线程池”和“连接池”技术也只是在一定程度上缓解了频繁调用 IO 接口带来的资源占用。而且,所谓“池”始终有其上限,当请求大大超过上限时,“池”构成的系统对外界的响应并不比没有池的时候效果好多少。所以使用“池” 必须考虑其面临的响应规模,并根据响应规模调整“池”的大小。
对应上例中的所面临的可能同时出现的上千甚至上万次的客户端请求,“线程池”或“连接池”或许可以缓解部分压力,但是不能解决所有问题。
总之,多线程模型可以方便高效的解决小规模的服务请求,但面对大规模的服务请求,多线程模型并不是最佳方案。下一章我们将讨论用非阻塞接口来尝试解决这个问题。
使用select()接口的基于事件驱动的服务器模型
大部分 Unix/Linux 都支持 select 函数,该函数用于探测多个文件句柄的状态变化。下面给出 select 接口的原型:
- FD_ZERO(int fd, fd_set* fds)
- FD_SET(int fd, fd_set* fds)
- FD_ISSET(int fd, fd_set* fds)
- FD_CLR(int fd, fd_set* fds)
- int select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
- struct timeval *timeout)
这里,fd_set 类型可以简单的理解为按 bit 位标记句柄的队列,例如要在某 fd_set 中标记一个值为 16 的句柄,则该 fd_set 的第 16 个 bit 位被标记为 1。具体的置位、验证可使用 FD_SET、FD_ISSET 等宏实现。在 select() 函数中,readfds、writefds 和 exceptfds 同时作为输入参数和输出参数。如果输入的 readfds 标记了 16 号句柄,则 select() 将检测 16 号句柄是否可读。在 select() 返回后,可以通过检查 readfds 有否标记 16 号句柄,来判断该“可读”事件是否发生。另外,用户可以设置 timeout 时间。
下面将重新模拟上例中从多个客户端接收数据的模型。
图4.使用select()的接收数据模型
498)this.width=498;'' onmousewheel = ''javascript:return big(this)'' alt="图 4. 使用 select() 的接收数据模型" src="/uploadfile/201301/12/2B122745883.jpg" />
上述模型只是描述了使用 select() 接口同时从多个客户端接收数据的过程;由于 select() 接口可以同时对多个句柄进行读状态、写状态和错误状态的探测,所以可以很容易构建