【编者按】网学网毕业论文提纲频道为大家收集整理了“莲纤维的结晶结构与理化性能的研究“提供大家参考,希望对大家有所帮助!
以下是一篇关于莲纤维的结晶结构与理化性能的研究的毕业论文提纲,欢迎浏览!
1.引言
近年来由于人们对环境保护更加重视以及对生态环保制品的需求上涨,天然纤维资源及其纺织品倍受青睐,研究开发具有绿色环保性能的新型天然纤维资源已成为纺织行业的重要课题。极具潜力作为新型天然纤维应用到纺织行业的莲纤维是从莲叶/花柄折断后的横断面中抽取出来的长丝,即从莲叶柄管状分子细胞中分离出来的纤维,实为叶柄管状分子次生壁螺旋状加厚物。
本文主要对莲纤维的结晶结构进行了研究,并测试了莲纤维的力学性能、吸湿性能及耐化学试剂性,为莲纤维作为新型天然纤维素纤维应用于纺织行业奠定基础。
2.试验
2.1 试验材料
取自微山湖的成熟莲叶柄清洗干净后折断拉开,晾干备用。
2.2 试剂与基础仪器
分析纯 NaOH、H2SO4、NaClO 及NaHSO3,电子天平(精确度为0.1mg),烘箱。
2.3 试验方法
2.3.1 莲纤维结晶取向测试
试验仪器及测试条件:日本理学 D/Max-2550 PC X 射线衍射仪,Cu-Kα 射线源(40Kv,250mA),扫描速率为5o/min,扫描范围为2θ 在5.0 o ~60.0 o。
2.3.2 单纤维线密度及一次拉伸断裂测试
仪器采用 FAVIMAT AIROBOT 全自动单丝测试仪线密度测试条件:夹持距离为10 mm ,预加张力为0.03cN/dtex ,测试速度为2mm/min ,测试50次,取其平均值。
一次拉伸断裂测试条件:夹持距离为10mm,预加张力为0.05cN/dtex,拉伸速度2mm/min,测试50次,取其平均值。测试指标为断裂强力,断裂伸长率,断裂强度。
2.3.3 吸湿性能测试
吸湿实验:将莲纤维和棉纤维各称取重约1 g的试样,在50℃低温烘箱内预烘1 h,使纤维的回潮率大大低于其标准平衡回潮率。在恒温恒湿室(温度20℃±2℃,相对湿度65%±3%)内,迅速称取试样的初始重量,将试样放置在玻璃托盘中,尽量保持蓬松状态,每隔5 min记录1次试样重量,直至纤维达到吸湿平衡。将试样放在105℃±2℃的烘箱中烘至恒重,称取干重,计算回潮率。
放湿实验:将莲纤维和棉纤维各称取重约1 g的试样,放入盛水的干燥器(相对湿度为100% )内,搁置96 h,使试样达到吸湿平衡。然后在恒温恒湿室(温度为22℃,相对湿度为66%)内,测试试样放湿后重量的变化,其方法同上。达到放湿平衡后,将样品烘干,称取干重,计算回潮率。
2.3.4 耐酸碱性测试
将纤维在50℃烘箱中烘两个半小时后,称重,分别在不同浓度的化学试剂不同条件下处理三个小时后,烘干,称重,计算纤维失重率。然后挑取单根纤维在电子单纤维强力仪上进行断裂强力测试,并用扫描电镜观察莲纤维处理前后表面形态。
3.结果与讨论
3.1 结晶结构
非常清晰地显示了3 个特征峰,布拉格角分别为16. 44°、22.26°和34.54°,对应于(101), (002) 和(040)晶面,与天然纤维素纤维如棉、麻等的衍射图谱相似,且主要特征峰的晶面间距与棉麻的非常接近,说明莲纤维的晶体结构属于纤维素I 晶体。
经计算莲纤维的结晶度为42.78%,小于棉麻的结晶度;同样40.24%的结晶指数也低于棉麻的60%和80%。低的结晶指标表示纤维内无定形区比例高,分子结构排列无序,使得纤维大分子更易与水分子和化学试剂反应,意味着纤维可能具有良好的吸湿性和染色性能。结晶结构同样也影响纤维的力学性能,一般来说,结晶度越高纤维的强力越高。
莲纤维的晶粒尺寸为2.7nm,远远低于棉纤维的,但接近于亚麻纤维的。据参考文献报道,棉纤维的晶粒尺寸在5.5~6.5nm,亚麻的晶粒尺寸据文献报道为2.8nm。晶粒尺寸对纤维的性能有较大影响。粗大的晶粒尺寸使得纤维的刚性、弹性模量较大,而延伸度、耐疲劳程度、柔曲小。概括来说,纤维的晶粒尺寸宜小不宜大。
莲纤维的取向度为73.3%。高于棉纤维的取向度(60%~65%),与麻纤维的(90%左右)相比稍低。可见莲纤维的微纤沿纤维轴向排列较整齐。纤维的结晶取向结构将综合影响其理化性能。
3.2 莲纤维的单丝线密度
单丝样品在 FAVIMAT 仪器上夹持住后,在正弦振荡下产生自激振荡,仪器通过光电传感器获取其共振频率。
自然状态下的单根莲纤维是由一排复丝螺旋排列而成,其组成根数在6~12左右,组成根数的差异造成了单根莲纤维的细度变化较大,最大值可达1.81dtex,最细只有0.56dtex。组成莲纤维的单根丝的直径在3~5um左右,属于超细纤维范畴,因此自然状态下的莲纤维就相当于由超细纤维组成的超复丝,具有优异的吸湿性及柔软的手感。
3.3 莲纤维的一次拉伸测试
单根莲纤维典型的一次拉伸曲线如图1所示。由图看出,莲纤维的一次拉伸曲线与麻类的拉伸曲线相似。伸长与强力几乎成线性关系,符合虎克定律,几乎没有屈服变形阶段,拉伸断裂属于脆断。
初始当外力较小时,由于分子链本身的伸长和无定形区中横向次价键产生的变形导致纤维伸长。由3.1及3.2测试所知,莲纤维的无定形区居多且大分子链沿轴向取向较好,所以当施加外力继续增加,横向连接键无法承受更大力发生键的断裂,同时大分子链已充分伸直无法承受进一步的拉伸而断裂,导致纤维断裂。整个拉伸阶段纤维的变形主要是纤维大分子链键长和键角的改变所致。变形的大小正比于外力的大小,即应力应变关系是线性的,服从虎克定律。
可以看出,莲纤维的断裂伸长率较小,平均值为2.60 %,与麻类的相近,低于棉、粘胶和天丝等纤维素纤维的断裂伸长率。尽管莲纤维的低结晶及小晶粒的结构能够使纤维的伸长增加,但由于分子链的取向度较高,破坏分子间结合力后产生的滑移较小使得纤维伸长率较低。
莲纤维的断裂强度最大值为5.25 cN/dtex,最小值为1.07 cN/dtex,平均值为2.23N/dtex,与棉纤维的断裂强度(1.9~3.5 cN/dtex)接近。莲纤维的结晶度和晶粒尺寸远低于棉纤维的,使得大分子链间堆砌疏松,分子间作用力小,然而较高的分子链取向,又使其在纤维轴向方向具有较好的抵抗外力作用,总体的超分子结构使得莲纤维具有了与棉纤维接近的断裂强度。
莲纤维的最高初始模量为144.1cN/dtex,最低为12.9cN/dtex,平均值为78.5 cN/dtex,与棉纤维的68~93 cN/dtex接近,表明莲纤维的刚性低,柔韧性较好。主要原因是莲纤维的结晶度低,分子链间作用力低,且小晶粒结构使得纤维分子链易变形,致使纤维抵抗变形能力不高。
3.4 莲纤维的吸湿性能
莲纤维莲的吸湿性能遵循天然纤维素纤维的吸湿规律,吸放曲线走势与棉纤维的相似。吸放湿过程中莲纤维的回潮率始终高于棉纤维的。由吸湿到达平衡比放湿到达平衡的时间短, 50min 后棉纤维和莲纤维先后到达吸湿平衡,而两者到达放湿平衡所需的时间为120min。莲纤维由吸湿平衡获得的回潮率约为9.37%,由放湿平衡获得的回潮率则为12.30%。
莲纤维优异的吸湿性能与其超分子结构有关。莲纤维的结晶度低,无定形区居多,而吸湿主要发生在无定形区的结晶区表面,无定形区越大,吸湿性越强。同时莲纤维的小晶粒尺寸及其本身超细的直径使其比表面积较大,表面吸附能力强,更易吸收水分子。
3.5 莲纤维的耐酸性