本文主要为广大网友提供“柴油机齿轮室盖钻镗专机总体及主轴箱设计”,希望对需要柴油机齿轮室盖钻镗专机总体及主轴箱设计网友有所帮助,学习一下!
客服咨询,网学网竭诚为您服务,本站永久域名:myeducs.cn |
2 组合机床总体设计 组合机床总体设计,通常是根据与用户签定的合同和技术协议书,针对具体加工零件,拟订工艺和结构方案,并进行方案图样和有关技术文件的设计。 2.1 组合机床工艺方案的制定 工艺方案的拟订是组合机床设计的关键一步。因为工艺方案在很大程度上决定了组合机床的结构配置和使用性能。因此,应根据工件的加工要求和特点,按一定的原则、结合组合机床常用的工艺方法、充分考虑各种因素,并经技术经济分析后拟订出先进、合理、经济、可靠的工艺方案。 此次设计的组合机床是用于加工柴油机齿轮室盖的钻镗专用组合机床,其工艺方案为钻孔和镗孔,其具体的加工工艺如下: a. 钻6-M6-6H孔至Φ5, 左侧面; b. 钻6-Φ9孔(深38), 右侧面; c. 钻3-Φ9孔(深78), 右侧面; d. 镗Φ45H8孔至Φ43.5, 后侧面; e. 倒孔口角至Φ46.6, 后侧面; 正确选择组合机床加工工件采用的基准定位,是确保加工精度的重要条件。 本设计的柴油机齿轮室盖是箱体类零件,箱体类零件一般都有较高精度的孔和面需要加工,又常常要在几次安装下进行。因此,定位基准选择“一面双孔”是最常用的方法,因此该被加工零件采用 “一面两销”的定位方案,定位基准和夹压点见零件的工序图。该定位方案限制的自由度叙述如下:以工件的右侧面为定位基准面,约束了y、z向的转动和x向的移动 3个自由度。短定位销约束了y、z向的移动2个自由度。长定位销约束了x向的转动1个自由度。这样工件的6个自由度被完全约束了也就得到了完全的定位。 2.2 组合机床配置型式及结构方案的确定 根据选定的工艺方案确定机床的配置型式,并定出影响机床总体布局和技术性能的主要部件的结构方案。既要考虑能实现工艺方案,以确保零件的精度、技术要求及生产率,又要考虑机床操作方便可靠,易于维修,且润滑、冷却、排屑情况良好。对同一个零件的加工,可能会有各种不同的工艺方案和机床配置方案,在最后决定采取哪种方案时,绝不能草率,要全面地看问题,综合分析各方面的情况,进行多种方案的对比,从中选择最佳方案。 各种形式的单工位组合机床,具有固定式夹具,通常可安装一个工件,特别适用于大、中型箱体类零件的加工。根据配置动力部件的型式和数量,这种机床可分为单面、多面复合式。利用多轴想同时从几个方面对工件进行加工。但其机动时间不能与辅助时间重合,因而生产率比多工位机床低。 在认真分析了被加工零件的结构特点及所选择的加工工艺方案,又由单工位组合机床的特点及适应性,确定设计的组合机床的配置型式为单工位卧式组合机床。 2.3 各侧具体零部件的设计、计算及选择 2.3.1刀具的选择 考虑到工件加工尺寸精度,表面粗糙度,切削的排除及生产率要求等因素,所以加工15个孔的刀具均采用标准锥柄长麻花钻和单导向悬臂镗刀。 2.3.2右侧面钻9-Φ9 a. 切削用量的选择 右侧是钻削6-Φ9(深38)及3-Φ9(深78) 根据孔径的大小和深径比,以及被加工材料的硬度查参考文献[9]表2.17知:主轴的进给量f为0.1~0.18mm/r,切削速度vc=10~18m/min。 钻孔的切削用量还与钻孔的深度有关,当加工铸铁件孔深为钻头直径的6~8倍时,在组合机床上通常都是和其他浅孔一样采取一次走刀的办法加工出来的,不过加工这种较深孔的切削用量要适当降低些,因此选择切削速度vc=13m/min 进给量f=0.13mm/r,由此主轴转速n由公式 (2-1) 计算出 r/min,将主轴转速圆整为470 r/min。 实际切削速度vc、工进速度vf、工进时间tf 分别由下列公式求得 (2-2) (2-3) (2-4) 计算出实际切削速度vc=13.282m/min,工进速度vf=61.1mm/min,工进时间tf=1.26min b.切削功率,切削力,转矩以及刀具耐用度的选择 由参考文献[9]表6-20计算公式 切削力 (2-5) 切削转矩 (2-6) 切削功率 (2-7) 刀具耐用度 (2-8) 计算出切削力F=1144.5N,切削转矩T=3.18N·m,切削功率P=0.153kw,刀具耐用度Tn=768.799min c.动力部件的选择 由上述计算每根轴的输出功率P=0.153kw,右侧共9根输出轴,且每一根轴都钻Φ9直径,所以总切削功率P切削=0.153×9=1.377kw。则多轴箱的功率: kw,其中η=0.8,所以 kw。 因电机输出经动力箱时还有功率损耗,所以选择功率为2.2kw的电机,其型号为:Y100L1-4,由参考文献[9]表5-39选取1TD32-I型动力箱,动力箱的主轴转速715r/min 。 d.确定主轴类型,尺寸,外伸长度 滚珠轴承主轴:前支承为推力球轴承和向心球轴承,后支承为向心球轴承或圆锥滚子轴承。因为推力轴承设置在前端,能承受单方向的轴向力,适用于钻孔主轴。 在右侧面,主轴用于钻孔,因此选用滚珠轴承主轴。又因为浮动卡头与刀具刚性连接,所以该主轴属于长主轴。所以主轴均为滚珠轴承长主轴。 根据主轴转矩T=3.18 N·m,由参考文献[9]表3-4可知 (2-9) 其中B= 7.3,则计算出d=17.335mm,选取d=20mm。 由参考文献[9]表3-6查得主轴直径d=20mm, D/d1=30/20 mm, 主轴外伸尺寸L=115mm,接杆莫氏圆锥号1,2。 e. 导向装置的选择 组合机床钻孔时,零件上孔的位置精度主要是靠刀具的导向装置来保证的。导向装置的作用是:保证刀具相对工件的正确位置;保证刀具相互间的正确位置;提高刀具系统的支承刚性。 固定式导套:刀具或刀杆本身在导套内既有相对转动又有相对移动,由于这部分表面润滑困难;工作时有粉尘侵入,当刀杆相对导套的线速度超过20m/min时就会有研着的危险,因此选用导套前计算一下导套与刀具的线速度。由上述内容知导套与刀具的线速度vc=13.282m/min<20m/min,所以该导套选用通用短导套 由参考文献[9]表8-4查得导套的具体数值如下: D=15mm,D1=22mm,D2=26mm,D3=M6,L取16mm,(短型导套)l=8mm,l1=3mm,l3=12mm, e=18.5mm f. 连杆的选择 在钻、扩、铰孔及倒角等加工小孔时,通常都采用接杆(刚性接杆)。因为主轴箱各主轴的外伸长度和刀具均为定值,为保证主轴箱上各刀具能同时到达加工终了位置,须采用轴向可调整的接杆来协调各轴的轴向长度,以满足同时加工完成孔的要求。 为了获得终了时多轴箱前端面到工件端面之间所需要的最小距离,应尽量减少接杆的长度。 因为9-Φ9孔的钻削面是同一面且主轴内径是20mm,由参考文献[9]表8-1选取A型可调接杆 d=16mm,d1=Tr16×1.5 mm, d2=9mm, L=85mm, l4=110~135mm。 g. 动力部件工作循环及行程的确定 切入长度一般为5-10mm,取L1=7mm,切出长度由参考文献[9]表3-7公式 (2-10) 通过计算L2=8mm,加工时加工部位长度L(多轴加工时按最长孔算)L=78mm.由公式 (2-11) 求出L工=93mm。 为排屑要求必须钻口套与工件之间保留一点的距离,根据麻花钻直径Φ9,由参考文献[9]表3-4得导套口至工件尺寸l2=(1+1.5d)(参考钻钢) 取l2=10mm,又根据钻套用导套的长度确定钻模架的厚度为16mm。附带得出底面定位元件的厚度l4=38mm。 快退长度的确定:一般在固定式夹具钻孔或扩孔的机床上动力头快速退回的行程只要把所有的刀具都退回至导套内,不影响工件装卸即可。 快退距离 L快退=l2+L工-L1=10+93-7=96mm 快进距离 L快进=l2-L1=10-7=3mm 因快进距离太短,故将快进距离改为工进,则工进距离L工=93+3=96 mm。 选择刀具:根据钻口套至工进行程末端的距离L快退=96mm,及钻口套长度L套=8+3+16=27mm,由参考文献[5]表3-1查得选择:矩形柄麻花钻GB1435-78Φ9×250mm(切削长度部分145mm)。
|
本站发布的计算机毕业设计均是完整无错的全套作品,包含开题报告+程序+论文+源代码+翻译+答辩稿PPT |
本文选自计算机毕业设计http://myeducs.cn |