本文主要为广大网友提供“车辆减振器实验装置液压缸设计”,希望对需要车辆减振器实验装置液压缸设计网友有所帮助,学习一下!
车辆工程专业毕业论文,论文编号:JX890 论文字数:12462.页数:36
摘 要
液压减振器作为车辆悬架系统中主要的阻尼元件,其性能的好坏直接关系到整车的安全性及舒适性。为提高减振器性能,确保品质,除了应具有先进的设计、生产工艺、现代化的管理手段外,还要有先进的试验与测试设备,以检测减振器的外特性是否符合设计要求。为了提高试验台的检测性能,应采用其他更为先进的激振技术设计试验装置。本论文提出采用液压激振器,液压激振器是由振动液压缸、液控换向阀和弹性元件等组成,采用液压伺服系统通过收集压力传感器和位移传感器信号保证振动频率稳定且使之可调,其原理是微机作为主测控机,通过数据采集卡对试验系统进行测控。试验台动作指令由主测控机发出,通过D/A接口进入伺服控制器进行信号放大和PID调节,然后输出电流信号,驱动电液伺服阀;电液伺服阀根据信号,使液压缸按要求的方向和速度运动;液压缸在运动的同时带动减振器运动,并分别通过位移传感器测量位移、力传感器测量阻尼力。检测的位移信号和力信号通过适当调理分别进入数据采集卡的两路A/D中,然后计算机通过数据处理得到要求的减振器特性曲线。激振器液压缸为双出杆差动液压缸,活塞杆的一端连结在弹性元件上,另一端则作为输出振动元件。为了给实验台提供正弦及随机振动,设计液压缸的行程为左右各120mm、供油压力为25MPa、活塞杆的最大运动速度可达0.8m/s以及最大激振频率为20HZ,同时应液压缸要承受较大的冲击负荷,缸筒结构选用法兰连接并采用焊接方式。
关键词:减震器 实验装置 激振技术 液压激振器
Abstract
Hydraulic shock absorber suspension system as the main vehicle of the damping components, its performance is directly related to the quality of vehicle safety and comfort. Shock absorber to improve the performance to ensure that quality in addition to advanced design, production technology modern management means but also test and advanced test equipment to detect characteristics of the shock absorber with the design requirements. In order to improve the detection performance test-bed should be used in other, more advanced technical design test excitation. This paper presents the use of hydraulic vibration, hydraulic vibration exciter by hydraulic cylinders hydraulic control valve and flexible components, such as composition.Hydraulic servo system used to collect the pressure sensors and displacement sensor signal to ensure the stability of vibration frequency and adjustable so that its principle is the main computer as a machine monitoring and control through data acquisition card monitoring and control of the test system. Test-bed action directive issued by the machine monitoring and control, through the D / A interface into the servo controller PID signal amplification and conditioning and then the signal output current to drive the electro-hydraulic servo valve. Hydraulic cylinder in the shock absorber movement-led campaign at the same time and were measured through the displacement sensor displacement, force sensorsAmount of damping force. Displacement detection signal and power signal conditioning, respectively, through appropriate data acquisition card to enter the two-way A / D, and then computer data processing to be requested through the shock absorber characteristic curve. Vibrator dual hydraulic cylinders for the differential hydraulic cylinder rod and piston rod end of the elastic element in the link, the other end of the vibration components as output. Test-bed in order to provide sinusoidal and random vibration and the design of hydraulic cylinder for the trip around the 120mm with oil pressure of 25MPa and the maximum velocity of the piston rod of up to 0.8m / s and maximum excitation frequency of 20HZ. At the same time, liquid cylinder pressure to bear a larger impact load, the structure of choice Cylinder flange connection and the use of welding.
Keywords:Shock Absorber Experimental device Exciting technology
Hydraulic Vibrator
目 录
中文摘要 i
英文摘要 ii
目录 iii
第一章 绪论 1
1.1 研究背景 1
1.2 研究动机与目的 1
1.3 研究方法与系统描述 1
1.3.1 电动式激振器 2
1.3.2 电磁式激振器 3
1.3.3 电液式激振器 5
1.3.4 液压激振器 6
第二章 试验台设计方案 8
2.1 试验台方案设计 8
2.2 试验台主机结构 9
2.3 试验台测试原理 9
第三章 液压油缸的概述及类型选择 11
3.1 液压缸的概述 11
3.2 推力液压缸 11
3.2.1 单作用液压缸 11
3.2.2 双作用液压缸 11
3.2.3 组合液压缸 11
3.3 摆动液压缸 12
3.4 激振器液压缸的选择 12
第四章 液压油缸的主要部件设计 13
4.1 缸筒设计 13
4.1.1 缸筒结构选择 13
4.1.2 缸筒材料选择 13
4.1.3 缸筒要求 13
4.1.4 缸筒计算 14
4.1.5 缸筒制造加工要求 17
4.2 活塞设计 18
4.2.1 活塞结构型式 18
4.2.2 活塞与活塞杆连接型式 18
4.2.3 活塞密封结构 18
4.2.4 活塞材料 19
4.2.5 活塞尺寸及加工公差 19
4.3 活塞杆设计 19
4.3.1 活塞杆结构 19
4.3.2 活塞杆的材料和技术要求 19
4.3.3 活塞杆的计算 20
4.3.4 活塞杆尺寸 22
第五章 液压油缸其他部件设计 23
5.1 油口设计 23
5.2 法兰设计 23
5.3 上、下导向座设计 25
5.4 力变送器接头设计 26
5.5 垫设计 27
5.6 位移传感器座设计 27
5.7 透盖设计 28
第六章 总结 29
致谢 31
参考文献 32