鉴于大家对自动化PLC相关毕业设计十分关注,我们编辑小组在此为大家搜集整理了“ZigBee无线网络和GPRS蜂窝网络混合组网的无线自动抄表系统”一文,供大家参考学习!
论文编号:ZD1168 论文字数:27690,页数:50
摘 要
一方面,我国电力事业迅速发展,供电企业和用户都迫切需要现代化管理手段的介入,另一方面,计算机技术和通信技术不断成熟和进步。在技术和管理两方面亟待改革的迫切需求下,各种自动抄表技术逐渐发展起来。目前比较流行的自动抄表方式有IC卡预付费方式、电力线载波方式、GPRS蜂窝网络方式等,但是各种方式都存在一定的缺点,而没有大范围的推广。
本文提出一种由ZigBee无线网络和GPRS蜂窝网络混合组网的无线自动抄表系统设计方案,实现了以最低的组网、运行成本安全可靠的抄取用户的用电数据。ZigBee是一种新兴的近距离、低功耗、低速率、低成本的无线网络技术,适用于通信数据量不大,数据传输速率相对较低,分布范围较小但节点较多,对数据的安全可靠有一定要求,而且成本和功耗都非常低的场合。GPRS是在现有GSM网络基础上叠加的一个专为高速数据通信而设计的新网络。用户使用GPRS实现数据的分组发送和接收,具有实时在线、按流量计费、快捷登录、高速传输、自如切换等优点,能迅速降低服务成本、提高服务质量。
采集终端是本自动抄表系统的硬件核心,它是基于MSP430F149单片机的嵌入式数据处理、收发系统,通过CC2430芯片与集中器通信,通过RS-485总线与电能表通信。MSP430F149单片机是德州仪器推出的一款16位超低功耗RISC结构的混合信号处理器,它具有丰富的片内设备和超低的功耗。CC2430芯片是Chipcon公司生产的符合ZigBee技术规范的2.4GHz射频系统单芯片,它只需要很少的外围部件配合就能实现信号的收发功能。
本文主要论述了采集终端的设计过程。通过对采集终端的功能分析,首先确定其主要由核心处理器、日历时钟电路、存储器电路、RS-485接口电路、无线通信电路等几部分组成,然后进行各部分电路的器件选型并做出采集终端的原理图和PCB版图。在采集终端的软件设计部分主要介绍了跟电能表和CC2430的通信协议和实现过程。由于MSP430F149单片机不具有IIC总线接口,本文给出了一种软件模拟IIC接口方案,实现跟存储器芯片和时钟日历芯片的通信。
本文还简单介绍了集中器和管理软件的设计过程,最后给出了改进本自动抄表系统的一些方向。
关键词:自动抄表系统,ZigBee,采集终端,MSP430F149,CC2430
Abstract
On the one hand, because of the rapid development of Chinese power industry, power supply enterprises and users are urgently needed in modern management method, on the other hand, the computer technology and communication technology continues to mature and progress. In the two aspects of technology and management to the urgent needs of reform, the various automatic meter reading technology gradually developed. Currently popular automatic meter reading methods have IC card prepayment way, power line carrie way, GPRS cellular network way and so on. Each way has certain shortcoming, but does not have the wide range promotion.
This paper presents a scheme for wireless automatic meter reading system design by ZigBee wireless network and GPRS cellular networks, in order to copy user’s data safely with lowest cost. ZigBee is an emerging at close range, low power, low speed, low-cost wireless network technology, suitable for not amount of data communication, small range but many points, safe and reliable data transger but low rate, and low cost and power consumption. GPRS is a new network designed for high-speed data communication based on GSM network in existing. User data packet to send and receive by GPRS network, with real-time online, billing according to the flow, fast sign, high-speed transmission, switching, etc. It can reduce service costs and improve service quality quickly.
The terminal is the key hardware of the automatic meter reading system, which is the data processing, receiving and sending embedded system based on MSP430F149 microprocessor. It communicates with the collector through the chip of CC2430, and communicates with the energy meter through the RS-485 bus. MSP430F149 microprocessor is a 16-bit ultra-low power RISC structure of mixed-signal processors produced by Texas Instruments, which has rich components on-chip and ultra-low power consumption.The chip of CC2430 is a 2.4GHz RF System-on-Chip in line with the ZigBee specification produced by Chipcon, which needs only few peripheral parts to receive and send data.
This paper discusses the design process of the terminal, which is composed by central processor, calendar clocking circuit, memory circuits, RS-485 interface circuit and wireless communication circuit, etc. Through the analysis of the terminal’s function, we select right device for the various parts of the circuit and make the terminal’s schematic and PCB layout. The terminal’s software mainly introduces the protocol and process communicating with energy meter and CC2430. Because MSP430F149 does not have IIC bus, this paper presents a software simulating IIC bus program, for communicating with memory chip and calendar chip.
This paper also simply introduces the design process of the collector and management software, and give some ways to improve the automatic meter reading system.
Keywords: Automatic Meter Reading System, ZigBee, Terminal, MSP430F149, CC2430
目 录
第1章 绪论 1
1.1. 自动抄表的现状 1
1.2. 本课题的现实意义 1
1.3. 论文的结构安排 2
第2章 ZigBee组网技术 3
2.1. ZigBee简介 3
2.2. ZigBee协议架构 4
2.2.1. ZigBee协议栈结构 4
2.2.2. ZigBee中的设备 5
2.3. ZigBee组网和路由机制 6
2.3.1. ZigBee网络拓扑 6
2.3.2. 路由算法 6
第3章 系统总体设计 8
3.1. 项目需求分析 8
3.2. 总体设计方案 8
第4章 采集终端设计 10
4.1. 主控芯片MSP430F149 10
4.1.1. MSP430F149的主要优点 10
4.1.2. MSP430F149的主要功能模块 10
4.1.3. MSP430F149的工作方式 13
4.1.4. MSP430F149的开发方法 14
4.2. CC2430介绍 15
4.2.1. 芯片的主要特点 15
4.2.2. 硬件电路应用 16
4.2.3. 软件编程 16
4.3. 采集终端的硬件设计 17
4.3.1. 功能分析 17
4.3.2. 原理图设计 18
4.3.3. PCB设计 20
4.3.4. 硬件测试 24
4.4. 采集终端的软件设计 24
4.4.1. 软件设计思路及流程 24
4.4.2. 软件开发环境 25
4.4.3. 功能模块设计 27
4.4.4. 遇到的问题与解决方法 32
4.4.5. 软件测试 34
4.5. 性能参数 35
4.6. 本章小结 35
第5章 集中器和管理中心设计 37
5.1. 集中器 37
5.1.1. 集中器的通信机制 37
5.1.2. Saro3150EP GPRS DTU 37
5.1.3. 集中器的硬件设计 38
5.2. 管理中心 39
5.2.1. 管理软件的功能 39
5.2.2. DTU远程监控 40
5.3. 本章小结 41
第6章 总结与展望 42
6.1. 工作总结 42
6.2. 展望 42
[参考文献] 43
致 谢 45