网站导航免费论文 原创论文 论文搜索 原创论文 网学软件 学术大家 资料中心 会员中心 问题解答 原创论文 大学论文导航 设计下载 最新论文 下载排行 原创论文 论文源代码
返回网学首页
网学联系
最新论文 推荐专题 热门论文 素材专题
当前位置: 网学 > 网学资源大全 > 农学论文 > 正文

棕榈(Trachycarpus fortunei)的遗传多样性研究

来源:http://myeducs.cn 联系QQ:点击这里给我发消息 作者: admin 发布时间: 13/09/05
【网学提醒】:本文主要为网上学习者提供棕榈(Trachycarpus fortunei)的遗传多样性研究,希望对需要棕榈(Trachycarpus fortunei)的遗传多样性研究网友有所帮助,学习一下吧!

资料包括: 论文(66页25933字) 图纸 
说明:
摘 要
棕榈科是泛热带分布的科,棕榈(Trachycarpus fortunei)是其中少数可以分布到温带的植物,在中国的分布遍及长江以南各个省区。本文通过对棕榈标本和文献的查阅,结合对云南、广西、湖南三省棕榈的实地调查和观察,分析棕榈的分布范围和居群特征。棕榈居群内个体数少,幼树和幼苗极少,年龄结构不合理。同时对棕榈属植物的分布进行分析。
从棕榈的干燥叶片或新鲜叶片中采用CTAB法摸索和提取棕榈基因组DNA,找出最好的提取条件和药剂用量。在此基础上,对棕榈ISSR-PCR进行扩增,对影响ISSR反应的各因子(模板DNA浓度、Mg2+用量、dNTP浓度、退火温度、热循环数及不同厂家生产的药品与仪器)进行探讨,确定了该研究的最佳反应条件,建立了棕榈ISSR反应的最佳反应体系,为进行棕榈居群遗传多样性的研究奠定了基础。摸索获得的最佳ISSR反应条件应用于棕榈13个居群200个样本的扩增。从100条ISSR引物中筛选出可以扩增出清晰、重复性好的条带的引物,结果共产生了107条带,其中102条具有多态性,扩增条纹的大小在300-1900bp,多态性百分率为95.33%,单态率为4.67%,平均每个引物能扩增出8.9条带。棕榈的遗传多样性及分化系数由POPGENE软件获得。棕榈物种水平的遗传多样性(Ht)为0.3234,居群内遗传多样性(HS)是0.1982。棕榈的(Gst)值为0.3827,即38.27%的变异存在于居群间,61.73%的变异存在于居群内,棕榈的遗传变异主要存在于居群内。Nei 遗传多样性指数h为0.3218,Shannon’s信息指数I为0.4843。
由UPGMA法获得的基于Nei的无加权计算遗传距离棕榈各居群的聚类图。棕榈各居群的遗传距离在0.06和0.27之间, 遗传距离最小的是0.06在广西黄沙镇居群GHS6和广西花坪自然保护区居群GHP7之间,其次是DWS1和DWS2, DWS2 和 DWS3,DYX4和DFG5之间,遗传距离为0.09。遗传距离最大的是0.27在DWS1和GHS6, GHS6 和 XAR10之间,次大的为0.26在D1和GHP7之间。这13个居群的棕榈分为4组,第一组为居群DWS1, DWS2和DWS3;第二组为居群DYX4, DFG5, GHS6和GHP7;第三组为居群XAR10, XYY11, XZJ12和YFL13;第四组为居群GJX8和GNOP9。从系统图上可以看出来自云南省文山县的三个居群(DWS1, DWS2和DWS3)有着更近的亲缘关系而聚在一起;居群GHS6和GHP7,居群XAR10, XYY11和XZJ12 在遗传上都有很近的亲缘关系,这些与它们的地理距离的大小是统一的。然而也有部分居群的遗传关系与地理距离不相符。
各居群的遗传多样性从高到低依次是:XAR10 > DYX4 > GHS6 > DWS3 > DFG5 > DWS2 > XYY11 > GNP9 = XZJ12 > GHP7 >YFL13 > DWS1 > GJX8。遗传多态性最高的居群是湖南安仁的XAR10居群,其次是云南玉溪DYX 4居群,多态性比率最低的是广西的GJX8。
棕榈居群内存在巨大的遗传变异,适应力强。丰富的遗传多样性为棕榈提供了变异的源泉。棕榈分布广,栽培历史悠久,但野生居群都比较小,多呈岛屿状分布格局,提出了棕榈的保护策略。

关键词:棕榈,遗传多样性,ISSR标记,居群,棕榈属

Abstract
Palm plant is considered to be a symbol of tropical or subtropical landscape, Trachycarpus fortunei is a species with widespread range in south of River Changjiang. Based on the field investigation, note of speciman and literatures, the distribution and of populations T. fortunei were probed. T. fortunei distributed mainly in Yunnan, Guangxi, Guangdong, Hunan, Hubei, Zhejiang, Sichuan, Fujian, Guizhou, Shanxi, Jiangxi and Gansu.The popultion size of T. fortunei are small, number of young tree small and the age struction inconsequence. The distribution of genus Trachycarpus were analysised and its origin been discussed.
Genomic DNA was isolated from leaf samples using the improved hexadecyl- Cetyl Trimethyl Ammonium Bromide (CTAB) method. Inter-Simple Sequence Repeat (ISSR) is a good molecular marker for revealing genetic diversity. Reaction system differed with difference species, so optimization of ISSR-PCR reaction is very important. The study discussed mainly the factors impacting the banding patterns of PCR. To optimize the reactions, several parameters were tested, including the concentration of DNA template, MgCl2, dNTP, primer and Taqpolymerase with different annealing temperature.
In this study Inter-simple sequence repeat (ISSR) method revealed genetic diversity of 200 individuals among 12 natural populations from three province Yunnan, Guangxi and Hunan and one cultivated population from Shenzhen FairyLake Botany Garden. Twelve of 100 ISSR primers can amplify clear bands, and produced 107 loci, 102 of which is polymorphic, the percentage of polymorphic loci is 95.33%. The band size ranged from 300 to 1900bp, with an average of 8.9 bands per primer with an average of 8.5 bands per primer. The indices of genetic diversity and gene variation were computed by the POPGENE in this study. The value of total gene diversity (HT) is 0.3234, gene diversity within population (HS) is 0.1982. The value of (GST) is 0.3827. The gene variation remains mainly within population. Nei’s gene diversity h = 0.3218, Shannon’s information index I = 0.4843.
The dendrogram based on Nei''s genetic distance by the UPGMA method. The genetic distance between populations is between 0.06 and 0.27, the shortest genetic distance is 0.06 between GHS6 and GHP7. The second shortest genetic distance is 0.09 between DWS1 and DWS2, between DWS2 and DWS3 and between DYX4 and DFG5. The longest genetic distance is 0.27 between DWS1 and GHS6, between DHS6 and XAR10. The second longest genetic distance is 0.26 between DWS1 and GHP7.
The 13 populations formed four groups according to the dendrogram. The first group is population DYX4, DFG5, GHS6 and GHP7; the second group is population XAR10, XYY11, XZJ12 and YFL13; the third group is GJX8 and GNOP9; the forth group is population DWS1, DWS2 and DWS3. Populations in Wenshan (DWS1, DWS2 and DWS3) showed a closer genetic relationship, Population GHS6 and GHP7, XAR10 and XYY11 and XZJ12 have a closer genetic relationship. Their genetic distance accord with geographic range. The cultivated population YFL13 and population XZJ12 has a closer genetic relationship.
The rank of the percentages of polymorphic sites of 13 populations was: XAR10 > DYX4 > GHS6 > DWS3 > DFG5 > DWS2 > XYY11 > GNP9=XZJ12 > GHP7 > YFL13 > DWS1 > GJX8. The highest population of gene diversity is Hunan Anren population XAR10, the second is population Yunnan Yuxi DYX4. The lowest genetic diversity is Guangxi Jinxiu population GJX8.
The genetic polymorphic of T. fortunei is very high, and mainly variations are within populations. T. fortunei is a widespread species, has been used for thousand years. Its population size is small and geographic range is wide.
Key Words: Trachycarpus fortunei; Genetic diversity; ISSR marker; Population; Genus Trachycarpus




目录:
摘 要II
AbstractIV
1.引 言2
1.1棕榈属植物的地理分布2
1.1.1 棕榈属种的主要形态特征及命名2
1.1.2 棕榈属的地理分布6
1.1.2.1 棕榈7
1.1.2.2对叶棕榈7
1.1.2.3 宽裂棕榈7
1.1.2.4 山棕榈7
1.1.2.5龙棕7
1.1.2.6 泰国棕榈8
1.1.2.7 石门棕8
1.1.2.8 喜马拉雅棕榈8
1.1.2.9 魏格纳棕榈8
1.1.3 棕榈属的利用情况8
1.1.3.1棕榈(T. fortunei)广泛的应用9
1.1.3.2 棕榈属其它种的应用9
1.3 分子标记的选择及在棕榈科居群遗传多样性中的应用10
2. 材料与方法14
2.1 材料14
2.1.1野外调查与植物材料采集14
2.1.2 主要化学试剂15
2.2 研究方法16
2.2.1 DNA提取16
2.2.1.1 所用药品的配制16
2.2.1.2 DNA提取过程16
2.2.2 PCR扩增17
2.2.2.1 预扩增17
2.2.2.2 对影响ISSR-PCR扩增效果的各成分与条件设置梯度18
2.2.3利用琼脂糖电泳对DNA与扩增产物进行检测19
2.2.3.1 DNA的检测与定量20
2.2.3.2 扩增产物的检测20
2.2.4 数据分析及主要遗传参数21
3.结果与分析23
3.1 棕榈在中国的地理分布23
3.2 ISSR-PCR反应条件筛选与优化26
3.2.1模板DNA浓度对ISSR反应体系的影响26
3.2.2 Mg2+对棕榈ISSR的影响26
3.2.3 dNTP浓度对ISSR反应的影响27
3.2.4 引物浓度对ISSR反应的影响27
3.2.5退火温度及热循环数对ISSR的影响27
3.2.6 TaqDNA聚合酶与PCR厂家及型号的不同对ISSR扩增效果的影响27
3.2.7 反应条件的确定27
3.3 由ISSR揭示的棕榈的遗传多样性28
3.3.1 棕榈物种水平的遗传多样性28
3.3.2 棕榈各居群的遗传多样性比较29
3.3.3 棕榈的遗传结构31
3.3.4 各棕榈居群的聚类分析33
4. 讨 论36
4.1 棕榈属植物的分布格局与起源初探36
4.2关于分子标记ISSR36
4.3 ISSR-PCR反应条件筛选与优化37
4.4 棕榈居群的遗传结构39
4.5 棕榈的保护40
主要参考文献42
附 录:49
附表1 缩写词及英汉对照49
附表2 实验中所用ISSR引物50
附图1 引物810对居群XAR的扩增51
附图2 引物810对居群GJX8的扩增51
附图3引物864对云南文山居群DWS1, DWS2, DWS3的扩增51
致 谢52


参考文献:
1.裴胜基,陈三阳,童绍金.中国植物志 XIII(1).北京:科学出版社,1991:11-13
2.刘海桑.观赏棕榈.北京:科学出版社,2002: 303
3.Martius.Historia Naturalis Palmrum,1849
4.Wendland HA. In Bull.Bot.France 1861,8:429
5.Gibbons M & Spaner TW.Palms for Southern California Part thirty: Trachycarpus.The Palm Journal,1998,138:8-17
6.陈璋.棕榈植物.福州:福建科学技术出版社,2001
7.Gay J.Le Chamaerops excelsa. In Bulletin de la Société Botanique de France,1861:8
8.Gibbons M, Spaner TW, Du NV & Anh P.Trachycarpus geminisectus, the eight peaks fan palms, a newspecies from Vietnam. Palms 2003,47(3): 143–148
9.--.Webbia,1908,3:187
10.--.Webbia.1910,5(1):70
11.秦仁昌,徐永椿.龙棕,云南植物的一新种.植物分类学报,1954,3(3):367-368
12.McCurrach JC. Palms of the World, Harper and Brothers, 1960 New York.
13.卫兆芬.棕榈科植物的地理分布.热带亚热带植物学报,1995,3(2): 1-18
14.林有润.观赏棕榈.吉林:黑龙江出版社,2001
15.徐成东,董晓东.楚雄州的龙棕资源及保护与利用.楚雄师专学报, 1999,14(3):112-115
16.《贵州植物编委会》. 贵州植物志(第八卷),贵州人民出版社,1982:536-539
17.李时珍(明).本草纲目(下册).北京:人民卫生出版社,1982:2048-2049
18.(清)曹雪芹,高鹗著.红楼梦.北京:华夏出版社,1994
19.林有润.略论棕榈科与新分出的省藤科的系统分类、演化、区系地理及主要的经济用途. 植物研究,2002,22(3):341-365
20.崔述生,张浩主编..精编本草纲目.北京:中国古籍出版社:570
21.郭长强,任遵华.砂烫棕榈炭的质量分析.山东中医杂志,1994,13(4):173-174
22.Jones DL. Palms throughout the world.Washington:Press Smithsonian Institution,1994
23.Röser, M. Variation and evolution of karyotype characters in palm subfam. Coryphoideae s.l.Bot.Acta, 1993,106:170-182
24.Huang SF, Chen SJ, Chen XX. Plant chromosome count (3). Subtro. Forest Sci.Techno,1986(4):41-47
25.张金谈,刘炳崙.国产棕榈科花粉形态研究.植物学报,1983,25(4):318-325
26.Röser M.Variation and evolution of karyotype characters in palm subfam. Coryphoideae s.l. Bot.Acta,1993,106:170-182
27.刘丙纶棕榈科花粉萌发孔的演化趋向与其化石花粉.化石, 1995,1:9-11
28.Taylor JE,Hyde KD,Jones BG. The biogeographical distribution of microfungi associated with three palm species from tropical and temperate habitats.Journal of Biogeography,2000,27:297-310
29.陈星,冯宝华,张凌俊,肖尊安,王英典.棕榈在北方不同生态环境下越冬栽培适应性的生理研究.北京师范大学学报(自然科学版),2003,39(3):390-396
30.刘振林,马海慧,戴思兰.北方园林中冬季植物景观的表现.河北林业科技,2003(3):47-50
31.陈星,李俊全,王军玲,陈玉玲.低温下棕榈某些生理变化及低温锻炼对耐寒性的影响,1999,35(2):257-260
32.杨继,郭友好,杨雄,饶广远.植物生物学.北京:高教出版社;海德堡:施普林格出版社,1999
33.陈家宽,王徽勤.居群概念和方法在植物分类学中的应用.武汉植物学研究,1986,4(4):377-386
34.麦克尼利等著.1990.李文军等译.保护世界的生物多样性.见中国科学院生物多样性委员会编.生物多样性译丛(一).北京:中国科学技术出版社,1992:1-199
35.陈家宽.居群生物学与进化生化学.见:陈家宽,杨继.植物进化生物学.武汉:武汉大学出版社,1994:1-47
36.Weising K, Nybom H, Wolff K, Meyer W. DNA fingerprinting in plants and fungi. CRC press, Inc., Boca Raton,1995
37.邹喻苹,葛颂,王晓东系统与进化植物学中的分子标记.北京:科学出版社,2001:9-26
38.Zietkiewicz E, Rafalski A & Labuda D. Genome fingerprinting by simple sequence repeat (SSR)–anchored polymerase chain reaction amplification. Genomics, 1994,20: 176-183
39.张维铭.现代分子生物学实验手册.北京:科学出版社,2003:249-252
40.Baker WJ,Asmussen CB,Barrow SC,Dransfield J & Hedderson TA. A phylogentic study of the palm family (Palmae) based on chloroplast DNA sequences from the trnL-trnF region. Plant Syst.Evol,1999,219:111-126
41.Asmussen CB,Baker WJ & Dransfield J. Phylogeny of the palm falimy (Arecaceae) basede on rps16 intron and trnL-trnF plastid DNA sequences. Monocots:Systematics and Evolution.Eds K.L. Wilson and D.A.Morrion(CSIRO:Melbourne) 2000:525-537
42.Asmussen CB & Chase MW.Coding and noncoding plastid DNA in palm systematics. American Journal of Botany,2001,88: 1103-1117
43.Hahn WJ.A molecular phylogenetic study of palmae (Arecaceae) based on atpB, rbcL and 18S nrDNA sequences. Systems. Biology. 2002,51(1): 92-112
44.Loo AHB, Tan HTW, Kumar PP & Saw LG.Population analysis of Licuala glabra var. glabra (Palmae) using RAPD profiling. Annals of Botany,1999,84: 421-427
45.Loo AHB. Intraspecific variation in licuala glabra Griff(Palmae) in peninsular Malayasia – morphornetric analysis. Biological Journal of the Linnean Society, 2001,72:115-128
46.Naoto Y, Rika N, Kihachiro O, & Yoshikatsu M.Origin of Livistona chinensis var. subglobosa (Arecaceae) on “Islet of the gods”: Aoshima, Japan. American Journal of Botany, 2000,87(7): 1066-1067
47.Yoshida N, Nobe R, Yamada T, Ogawa K & Murooka Y. Origin of fan Palm (livistona chinensis R. Br. Var. subglobosa Becc.)in Aoshima,Japan. Journal of Bioscinence and Bioengineering, 2000,90(4):447-452
48.Haymes KM, Ibrahim IA, Mischike S et al. Rapid isolation of DNA from chocolate and date palm tree trops. J. Agric. Food Chem, 2004,52: 5456-5462
49.Knudsen JT. Variation in floral scent composition within and between populations of Geonoma macrostachys (Arecaceae) in the western Amazon. American Journal of Botany, 2002,89: 1772-1778
50.Dowe JL,Benzie J & Ballment E. Ecology and genetics of Carpoxylon macrospermum H.Wendl. & Drude(Arecaceae), an endangered palm from vanuatu.Biological Conservation, 1997,79:205-216
51.余艳,陈海山,葛学军.简单重复序列区间(ISSR)引物反应条件优化与筛选.热带亚热带植物学报,2003,11(1):15-19
52.张志红,谈凤笑,何航航等.红树植物海漆ISSR条件的优化.中山大学学报(自然科学版),2004,43(2):63-66
53.Aichitt M, Ainsorth CC, Thangavelu M. A rapid and efficient method for the extraction of total DNA from mature leaves of the date palm (Phoenix dactylfera L.). Plant Mol Bio Rep, 1993,11 (4): 317-319
54.王中仁.植物等位酶分析,北京:科学出版社,1998
55.Wright.Evolution and genetics of populations Vol.4.Variabilaty within and among natural populations. Chicago:Press University of Chicago,1978
56.林泉.浙江植物志(第七卷)浙江科学技术出版社,1986
57.福建省科学技术委员会.福建植物志(第六卷).福建科学技术出版社,1994
58.付书遐.湖北植物志. 武汉:湖北科学技术出版社,1998
59.廖文波.中山大学博士论文:广东维管植物区系研究,1992
60.Hamrick JL & Godt MJW. Allozyme diversity in plant species.In Broon AHD, Clegg MT et al, Plant popultion Genetics, Chapter 3:Reading and Genetic resources sunderland:sinuer: 1990,43-63
61.Wu CJ, Cheng ZQ, Huang XQ, Yin SH, Cao KM & Sun CR. Genetic diversity among and within populations of Oryza granulata from Yunnan of China revealed by RAPD and ISSR markers: implications for conservation of the endangered species. Plant Science 2004,167: 35-42
62.何显静,李标,虞泓.紫斑百合居群生物学研究.云南大学学报(自然科学版),2003,25(增刊):78-83
63.Yoshida N,Nobe R, Yamada T, et al. Origin of fan palm (Livistona chinensis R. Br. var. subglobasa Becc.) in Aoshima, Japan. Journal of Bioscience and Bioengineering, 2000,90 (4): 447-452
64.洪德元,葛颂,张大名,汪小全,程树志.见:植物濒危植物的原理和方法,北京:中国科学技术出版社
65.廖文芳,夏念和,邓云飞等..华木莲的遗传多样性研究. 云南植物研究,2004,26(1):58-64
66.Qiu YX, Hong DY, Fu CX, Cameron KM.Genetic variation in the endangered and endemic species Changium smyrnioides (Apiaceae). Biochemical Systematic and Ecology,2004,32:583-596
67.周浙昆.中国栎属的起源演化及其扩散.云南植物研究,1992,14(3):227-236
68.廖文芳,夏念和,邓云飞等..华木莲的遗传多样性研究. 云南植物研究,2004,26(1):58-64
69.钱韦,葛颂,洪德元.采用RAPD和ISSR标记探讨中国疣粒野生稻的遗传多样性. 植物学报.2000,42:741-750
70.Gemas VJV, Almadanim MC,Tenreiro R, Martins A & Fevereiro P. Genetic diversity in the Olive tree (Olea europaea L. subsp. europaea) cultivated in Portugal revealed by RAPD and ISSR markers. Genetic Resources and Crop Evolution 2004,51: 501-511
71.冯富娟,王凤友,刘彤等.红松ISSR-PCR实验系统影响因素.植物学通报.2004,1(3):326-331
72.王建波. ISSR分子标记及其在植物遗传学中的应用.遗传.2002,24(5):613-616
73.黄培堂,俞炜源,陈添弥等译(Dieffenbach CW & Dveksler著).PCR技术实验指南(PCR Primer:A Laboratory Manua).1998.北京:科学技术出版社
74.肖龙骞,葛学军,龚 洵等. 贵州苏铁遗传多样性研究.云南植物研究.2003,25(6):648-652
75.Adams RP, Schwarzbach AE & Pandey RN. The concordance of terpenoid, ISSR and RAPD markers, and ITS sequence data sets among genotype: an example from Juniperus.Biochemical Systematics and Ecology, 2003,31: 375-387
76.Hatcher PE, Wilkinson MJ, Albani MC, et al. Conserving marginal populations of food plant (Impatiens noli-tangere ) of an endangered moth (Eustroma reticulatum) in a changing climate[J]. Biological Conservation, 2004,116: 305-317
77.Hamrick, JL, Godt MJW. & Sherman-Broyled LS. Gene flow among plant populations: evidence from genetic markers. In: Hoch DC & Stephnon AG. Experimental and molecular approaches to plant biosystematics. Missouri Botanical Garden,1995,215-232
78.Ayala FJ & Valentime JW. Evolving: The Theory and progress of Organic evolution,1991
79.Nei M & Roychoudhury AK. Genetic relationship and evolution of human races. Evolution Biology.1982,14: 1-19
80.张雪芹,左家哺.绒毛皂荚保护生物学的初步研究.湖南林业科技. 2003,30(1):55-57
81.文和群,刘演,韦发南.广西单子叶植物区系及资源特点.广西植物. 2000,20(1):18-26
82.菲新澍.生物进化控制论.北京:科学出版社,1998
83.Ellstrand NC & Elam DR. Population genetic consequences of small population size: implications for plant conservation. Annu. Rev. Ecol. Syst. 1993,24: 217-242
84.陈小勇.植物的基因流以及它在濒危植物保护中的作用.生物多样性,1996,4(2): 97-100

  • 上一篇资讯: 苹果花粉发芽试验初步研究
  • 下一篇资讯: 水产饲料中纤维素在生产中的应用以及草食性鱼类的营养需求
  • 相关资讯

    网学推荐

    免费论文

    原创论文

    文章排行榜

    设为首页 | 加入收藏 | 论文首页 | 论文专题 | 设计下载 | 网学软件 | 论文模板 | 论文资源 | 程序设计 | 关于网学 | 站内搜索 | 网学留言 | 友情链接 | 资料中心
    版权所有 QQ:3710167 邮箱:3710167@qq.com 网学网 [Myeducs.cn] 您电脑的分辨率是 像素
    Copyright 2008-2015 myeducs.Cn www.myeducs.Cn All Rights Reserved 湘ICP备09003080号