槽部温度场进行了计算[18];华中理工大学辜承林等人采用有限元法求解了SFS7-20000/110电力变压器铁芯温度场,并对磁密、油流速度、特征尺寸、油温等影响铁芯温升的因素进行了数值模拟研究[19]。1991年,北京重型电机厂的裴远航用三维有限元法计算了汽轮发电机定子线圈的温升分布,推导了损耗、通风和表面散热系数[20];Rkobacb等人采用有限元法计算了罗古斯克水电站水轮发电机转子阻尼条和磁极压板瞬态温度场[21]。1992年宁波大学的岑理章在Armor所进行的计算的基础上,考虑了定子铁心与绕组间的热交换,用正三棱柱单元有限元法分析计算了QFS-300-2型双水内冷汽轮发电机定子铁心三维温度场[22]。汤蕴珍、张大为用有限元法对水轮发电机定子最热段的三维温度场进行了计算[23];日本的学者S.Doi等人用流体可视化结果对大型汽轮发电机定子铁心端部进行了三维热分析,用实验方式确定了其通风状况与表面散热系数[24]。采用有限元法对提高电机设计中的各项性能具有重要意义。1998年东南大学黄学良等人提出了一种新的基于拱形体单元的计算电机温度场的有限元模型,并利用该模型计算了SF125-96/1560型发电机的铁芯温度场,该方法适合于具有圆柱体结构区域的温度场问题[25]。1997-2000年哈尔滨理工大学的孔祥春、李伟力等人采用直三棱柱单元有限元法对水轮发电机定子最热段三维温度场进行了深入的研究,同时采用平面三角元结合流体相似理论对一台俄罗斯电力问题研究所生产的200MW、2极汽轮发电机径切两向空冷系统转子二维温度场进行了计算。2000年,哈尔滨电机厂的李广德等人采用六面体等参元计算了水轮发电机半齿、半槽、半轴向长度的定子三维温度场[26];哈尔滨大电机研究所的鲁长彬等人利用三维CAD与有限元分析软件相结合的方法,计算了大型水轮发电机水内冷定子绕组及铁心的三维温度分布[27];哈尔滨理工大学的温嘉斌等人采用六面体等参元对大型水轮发电机转子三维温度场及其通风系统进行了综合计算研究。近些年来,随着数值计算方法的发展,一些新的分析方法也被引入到电机温度场的计算领域,例如边界元法[26]、小波—伽辽金有限元法[29]等。但这些方法或者由于算法程序不易实现,或者因为计算精度的高低尚缺乏实证,应用还不普遍。目前在电机温度场计算领域应用最广的还是有限元法。
通过上述发现,现在对电机的发热计算已经达到了一个比较完善的程度,但是这些