当前位置: 网学 > 网学资源大全 > 护理学 > 正文

一氧化氮与深低温停循环后神经系统缺血再灌注损伤

来源:Http://myeducs.cn 联系QQ:点击这里给我发消息 作者: admin 发布时间: 13/09/05
【网学提醒】:本文主要为网上学习者提供一氧化氮与深低温停循环后神经系统缺血再灌注损伤,希望对需要一氧化氮与深低温停循环后神经系统缺血再灌注损伤网友有所帮助,学习一下吧!

资料包括: 论文(4页3228字) 
说明:
关键词: 深低温停循环(DHCA) ,一氧化氮(NO) ,神经系统

  1967年Hikasa等首次提出体外循环深低温停循环(DHCA)技术并由Okamoto等应用于婴幼儿先天性心脏病,1975年Griepp[1]应用于成人大血管手术以来,大大提高了心脏及大血管手术的成功率,但单纯停循环超过60分钟,术后易出现神经系统的并发症。并发症的发生主要与DHCA脑缺血及再灌注损伤有关,其中谷氨酸的兴奋性神经毒性为造成损伤的重要原因,谷氨酸作用于N-甲基-D-天冬氨酸(NMDA)受体,导致大量Ca2+内流,激活NO合酶,NO的合成增加,因而NO在神经系统缺血再灌注损伤的作用逐渐受到重视。
  
一、NO的特性
  1. NO的生化和生理特性 NO在体内的生理作用非常广泛,对血液循环系统的正常功能起重要的调节作用,包括: (1) 调节血管张力。血管内皮细胞在基础状态下可持续释放NO,以维持一种基础的血管张力;(2) 调节血压。Witte等[2]证实,NO/cGMP系统参与大鼠正常血压节律性波动的调节。高剂量NOS抑制剂L-NAME(30 mg/kg体重)使大鼠呈现相反的血压波动节律;(3) 调节器官血流量。在整体动物,NOS抑制剂体循环给药常可引起冠状血管收缩;(4) 抑制血细胞粘附于内皮。内皮产生的NO可抑制多种血液成分如血小板、淋巴细胞、中性粒细胞和单核细胞粘附于血管内皮细胞;(5) 抑制血管内皮下细胞增殖。内皮释放的NO在体内还有抗血管壁细胞增殖的作用。有研究证实,慢性抑制内源性NO合成会导致冠状动脉及主动脉发生明显的增殖反应,血管壁增厚,血管腔变狭窄[3];(6) 抑制血小板聚集。Shahbazi等[5]研究了NO供体S-亚硝基-乙酰青霉胺(SNAP)、硝普钠(SNP)、S-亚硝基谷胱甘肽(GSNO)对血小板在覆盖有纤维蛋白原表面的蔓延的影响,发现这些NO供体对血小板的蔓延有抑制作用,且其抑制作用的能力为SNAP>SNP>GSNO,这种抑制作用可被氧合血红蛋白所逆转[4]。
目录:
  一、NO的特性

  二、NO与脑缺血损伤

  三、NO与深低温停循环后脑缺血再灌注损伤


参考文献:
1 Griepp RB, Stinson EB, Hollingsworth JF, Buehler. Prosthetic replacement of the aortic arch. J Thorac Cardiovasc Surg, 1995,70:1051-1063.
  2 Witte K, Schnecko A, Zuther P, et al. Contribition of the nitric oxide-guanylyl cyclase system to circadian regulation of blood pressure in normotensive Wistar-Wistar-Kyoto rats. Cardiovasc Res, 1995,30:682-688.
  3 Nugaguchi K, Egashira K, Takemoto M, et al. Chronic inhibition of nitric oxide synthesis causes coronary microvascular remodeling in Rats. Hypertension, 1995,26:957-962.
  4 Shahbazi T, Jones N, Radomski NW, et al. Nitric oxide donors inhibit platelet spreading on surfaces coated with fibrinogen but not with fibronectin. Thromb Res, 1994,75:631-642.
  5 Asahi M, Fujii, J, Suzuk K, et al. Inactivation of glutathione peroxidase by nitric oxide: implication for cytotoxicity. J Biol Chem, 1995,270:21035-21039.
  6 Castro L, Rodriguez M, Radi R. Aconitase is readily inactivated by peroxynitrite, but not by its precursor, nitric oxide. J Biol Chem, 1994,269:29409-29415.
  7 Kroncke KD, Fehseh K, Schmidt T, et al. Nitric oxide destroys zinc-sulfur clusters inducing zine release from metallothionein and inhibition of the zinc finge-type yeast trancription activator LAC9. Biochem Biophys Res Lommun, 1994, 200:1105-1110.
  8 Crow JP, Bechman JS. Reactions between nitric oxide superoxide, and peroxynitrite: footprints of peroxynitrite in vivo. Adv Pharmacol, 1995,34:17-43.
  9 Liu RH, Hotchkiss JH. Potential genotoxicity of chronically elevated nitric oxide: a reviews. Mutat Res, 1995,339:73-89.
  10 Lucas DR, Newhouse JP. The toxic effect of sodium-L-glutamate on the inner layers of retina. AMA Arch Ophthalmol, 1957,58:193-201.
  11 Olney JW. Brain lesions, obesity and other disturbances in mice treated with monosodium glutamate. Science, 1969,164:719-712.
  12 Sato S, Tominage T, Ohnishi T, et al. Electron paramagnetic resonance study on nitric oxide production during brain focal ischemia and reperfusion in the rat. Brain Research, 1994,647:91-96.
  13 Anderson RE, Meyer FB. Nitric oxide synthase inhibition by L-NAME during repetitive focal cerebral ischemia in rabbits. Am J Physiol, 1996,271(2pt2):II588-II594.
  14 Bolanos JP, Almeida A, Medina JM. Nitric oxide mediates brain mitochondrial damage during perinatal anoxia. Brain Res, 1998, 16:787:117-122.
  15 Brock MV, Blue ME, Lowenstein CJ, et al. Induction of Neuronal Nitric Oxide After IIypothermic Circulatory Arrest. Ann Thorac Surg, 1996,62:1313-1320.
  16 Steven SL, Tsui MD, Paul M, et al. Nitric Oxide Production Affects Cerebral Perfusion and Metabolism After Deep IIypothermic Circulatory Arrest. Ann Thorac Surg, 1996,61:1699-1707.
  17 Hiramatsu T, Jonas RA, Miura T, et al. Cerebral metabolic recovery from deep hypothermic circulation arrest after treatment with arginine and nitro-arginine methyl ester. J Thorac Cardiovasc Surg, 1996, 112:698-707.
  18 Remond JM, Zehr KJ, Blue ME, et al. AMPA Glutamate receptor antagonism reduces neurologic injury after hypothermic circulatory arrest. Ann Thorac Surg, 1995,59:579-584.
  19 Tseng EE, Brock MV, Lange MS, et al. Neuronal Nitric Oxide Synthase Inhibition Reduces Neuronal Apoptosis After Hypothermic Circulatory Arrest. Ann Thorac Surg, 1997,64:1639-1647.
  20 Segawa D, Hatori N, Yoshizu H, et al. The effect of Nitric Oxide Synthase inhibitor on reperfusion injury of the brain under hypothermic circulatory arrest. J Thorac Cardiovasc Surg, 1998,115:925-930.

  • 上一篇资讯: 一氧化氮与炎症性关节疾病
  • 下一篇资讯: 一氧化氮合酶与门脉高压高动力循环
  • 相关资讯

    网学推荐

    免费论文

    原创论文

    文章排行榜

    设为首页 | 加入收藏 | 论文首页 | 论文专题 | 设计下载 | 网学软件 | 论文模板 | 论文资源 | 程序设计 | 关于网学 | 站内搜索 | 网学留言 | 友情链接 | 资料中心
    版权所有 QQ:3710167 邮箱:3710167@qq.com 网学网 [Myeducs.cn] 您电脑的分辨率是 像素
    Copyright 2008-2015 myeducs.Cn www.myeducs.Cn All Rights Reserved 湘ICP备09003080号