【网学提醒】:本文主要为网上学习者提供游离脂肪酸致胰岛素抵抗的机制,希望对需要游离脂肪酸致胰岛素抵抗的机制网友有所帮助,学习一下吧!
资料包括: 论文(5页4255字)
说明:
关键词: 胰岛素抵抗,游离脂肪酸(FFA),型糖尿病
胰岛素抵抗的本质就是单位胰岛素的生物效应的降低,即胰岛素刺激葡萄糖利用能力的降低。最初,可以通过代偿性增加胰岛素分泌,产生高胰岛素血症,维持血糖水平正常。当这一过程发展到超过机体代偿极限,则表现为糖尿病。肥胖和2型糖尿病人中,普遍存在着胰岛素抵抗,这一点已从单纯性肥胖到肥胖性糖尿病患者的一系列研究中得到证实。可以说,胰岛素抵抗贯穿于2型糖尿病的整个发生、发展过程中。不仅表现在外周组织(即葡萄糖摄取的降低),而且还表现在肝脏(即肝糖输出的增加)。然而胰岛素抵抗的机制,目前并不十分清楚。近年来认为游离脂肪酸(free fatty acid, FFA)在致胰岛素抵抗中占有重要地位。
一、FFA在胰岛素抵抗相关疾病中升高
正常生理条件下,脂肪分解产生的FFA由脂肪细胞释出进入血循环。而不同状态下,FFA氧化的量可以呈现出很大的差异。在肥胖者,尤其是腹型肥胖情况下,存在着脂肪代谢紊乱。脂肪的堆积,导致脂肪分解的活跃,大量FFA进入血液,产生高FFA血症。肥胖病人在血脂正常时,FFA已经升高,表明在反映机体脂代谢情况方面,FFA的变化比甘油三酯和胆固醇脂的变化更敏感。而且研究已证实2型糖尿病中,甘油三酯升高是独立于年龄和体重的危险因子。由此可以看出,FFA升高与胰岛素抵抗产生有着密切的联系。
目录:
一、FFA在胰岛素抵抗相关疾病中升高
二、FFA抑制外周葡萄糖的利用
三、FFA促进糖异生
四、FFA引起高胰岛素血症
五、降低FFA的途径及对胰岛素抵抗的影响
参考文献:
1 Randle PJ, Garland PB, Hales CN, et al. The glucose fatty acid cycle: its role in insulin sensitivity and metabolic disturbance of diabetes mellitus. Lancet, 1963,1:785-789.
2 Tsao TS, Burcelin R, Katz EB, et al. Enhanced insulin action due to targeted GLUT4 overexpression exclusively in muscle. Diabetes, 1996,45:28-36.
3 Zierath JR, Houseknecht KL, Gnudi L, et al. High-fat feeding impairs insulin-stimulated GLUT4 recruitment via an early insulin-signaling defect. Diabetes, 1996,46:215-223.
4 Kim JK, Wi JK, Woun JH. Plasma free fatty acids decrease insulin-stimulated skeletal muscle glucose uptake by suppressing glycolysis in conscious rats. Diabetes, 1996,45:446-453.
5 Saloranta C, Koivisto V, Widen E, et al. Contribution of muscle and liver to glucose-fatty acid cycle in humans. Am J Physiol, 1993,264:E599-E605.
6 Wititisuwannakul D, Kim K. Mechanism of palmityl coenzyme: an inhibitor of liver glycogen synthase. J Biol Chem, 1977,252:7812-7817.
7 Boden G, Chen XH, Ruiz J, et al. Mechanisms of fatty acid-induced inhibition of glucose uptake. J Clin Invest, 1994,93:2438-2446.
8 Bonadonna RC, Zych K, Boni C, et al. Time dependence of the interaction between lipid and glucose in humans. Am J Physiol, 1989,257,E49-E56.
9 Clore JN, Glickman PS, Nestler JE, et al. In vivo evidence for hepatic autoregulation during FFA-stimulated gluconeogenesis in normal humans. Am J Physiol, 1991,261:E425-E431.
10 Consoli A, Nurjhan N, Capani F, et al. Predominant role of gluconeogenesis in increased hepatic glucose production in NIDDM. Diabetes, 1989,38:550-557.
11 Hirose H, Lee YH, Inman LR, et al. Defective fatty acid mediated β-cell compensation in Zucker diabetic fatty rats. J Biol Chem, 1996,271:5633-5637.
12 Peiris A, Mueller RA, Simth GA, et al. Splanchnic insulin metabolism in obesity: influence of body fat distribution. J Clin Invest, 1986,78:1648-1657.
13 Hennes MI, Dua A, Kissehah AH. Effects of free fatty acids and glucose on splanchnic insulin dynamics. Diabetes, 1997,46:57-62.
14 Svedberg J, Biorntorp P, Smith U, et al. Free-fatty acid inhibiton of insulin binding, degradation, and action in isolated rat heptocytes. Diabetes, 1990,39:570-574.
15 Opara EC, Garfinkei W, van Hubbard S, et al. Effect of fatty acids on insulin releas e: role of chain length and degree of unsaturation. Am J Physiol, 1994,266:E635-E639.
16 Sidossis LS, Wlofe RR, Coggan AR, et al. Regulation of fatty acid oxidation in untrained vs trained men during exercise. Am J Physid, 1998,274:E515-E522.
17 Wu MS, Johnston P, Shen WH, et al. Effect of metformin on carbohydrate and lipoprotein metabolism in NIDDM patients. Diabetes Care, 1990,13:1-4.
18 Hotamisligil GS, Spiegelman BM. Tumor necrosis factor-α: a key component of obesity-diabetes links. Diabetes, 1994,43:1271-1278.
19 Hotamisligil GS, Budavari A, Murray D, et al. Reduced tyrosine kinase activity of the insulin receptor in obesity-diabetes: central role of TNF-α. J Clin Invest, 1994,94:1543-1549.
20 Reynisdottir S, Angelin B, Langin D, et al. Adipose tissue lipoprotein lipase and hormone-sensitive lipase. Contrasting finding in familial combined hyperlipidemia and insulin resistance syndrome. Arterioscler Thromb Vasc Biol, 1997,17:2287-2292.
21 Montague CT, Prins JB, Sanders L, et al. Deport-related gene expression in human subcutaneous and omental adipocytes. Diabetes, 1998,47:1384-1391.
22 Park KS, Ciaraddi TP, Abrams Carter L, et al. PPAR-γ gene expression is related in skeletal muscle of obese and type Ⅱ diabetic subjects. Diabetes, 1997,46:1230-1234.