【网学提醒】:本文主要为网上学习者提供铁、氧自由基与肾小管上皮细胞,希望对需要铁、氧自由基与肾小管上皮细胞网友有所帮助,学习一下吧!
资料包括: 论文(6页6430字)
说明:关键词: 铁,氧自由基,肾小管上皮细胞
铁,过渡态金属元素之一,外层轨道电子分布呈3d64s2,化学性质活泼,极易得失电子,产生高反应性氧自由基或铁氧、过铁氧复合物,导致组织损伤。正常情况下,体内的铁以血红素铁或非血红素铁等非反应态存在,但在急、慢性肾脏病变,尤其是伴发蛋白尿的临床和动物模型中可发现小管液及上皮细胞浆内博莱霉素敏感铁即具有催化活性的游离铁显著增加〔1〕,并且可积聚于肾近曲、远曲小管细胞的溶酶体中,偶见于线粒体内。铁的积聚与蛋白尿、肾小管间质病变、脂质过氧化、次全切除肾的肾小球滤过率、残余肾重量等病损程度直接相关〔1,2〕,铁负荷可增加缺血肾的损伤易感性〔3〕;而肾小管上皮细胞是铁介导的氧自由基损伤的主要部位,小管间质病变又是继发性肾单位毁损和慢性进展性肾功能衰竭的主要决定因素〔2〕。因此阐明铁、氧自由基、肾小管上皮细胞间的相互作用机制正受到日益重视。
一、铁代谢与肾小管上皮细胞
蛋白尿时,尿转铁蛋白排泄增多,转铁蛋白是铁的主要转运形式,相对分子质量为88 000,球形,等电点5.2,与白蛋白(相对分子质量为65 000,pI 4.7)相比,其通过肾小球滤膜更多的是由膜孔的改变而不是受电荷屏障影响〔2〕。尿铁/尿转铁蛋白比例增高提示蛋白尿损害加重,铁的毒性作用与下列因素有关:铁的游离、Fe3+→Fe2+及用以生成&
#8226;OH的H2O2或其他过氧化体。转铁蛋白结合铁或小管腔内解离铁(亦可来源于血红蛋白、肌红蛋白)可经位于基底膜侧的转铁蛋白受体或刷状缘胞饮作用进入肾小管细胞。一般认为,铁的解离与尿液pH有关,当尿pH接近至6时,有催化活性的游离铁迅速增加,但尿液中铁螯合剂存在的浓度、种类,离子成分,可能存在的还原成分,使尿pH在<6或>6时,也能使铁游离〔4〕。尿中游离铁溶解度极低(<10-6),当pH>4时,铁以羟氧化体和磷酸形成不溶性复合物存在,因此小管液中非转铁蛋白结合铁,必须与小分子物质如焦磷酸、ADP或柠檬酸(可能性更大)结合,增加铁的溶解度与反应性。值得注意的是,凡是可缓解肾功能恶化、改善组织学形态的方法,均可同时降低小管液铁,如血管紧张素转换酶抑制剂(如开博通与铁结合可降解O2-〔5〕)、铁缺失、甲状腺切除、限制饮食蛋白、限磷。
目录: 一、铁代谢与肾小管上皮细胞
二、肾小管细胞的铁毒性作用机理
三、抗氧化系统与肾小管上皮细胞
参考文献: 1 Harris DCH, Yuet-ching Tay, Juchuan Chen, et al. Mechanisms of iron-induccd proximal tubule injury in rat remnant kidney. Am J Physiol,1995,269:F218-224.
2 Alfrey AC.Role of iron and oxygen radicals in the progression of chronic renal failure. Am J Kidney Dis,1994,23:183-187.
3 Zhao-Long Wu,Paller Mark S.Iron loading enhances susceptibility to renal ischemia in rats. Renal Failure. 1994,16:471-480.
4 Cooper MA,Buddington B,Miller NL, et al. Urinary iron speciation in nephrotic syndrome. Am J Kidney Dis,1995,25:314-319.
5 Jay D,Cuella A and Jay E. Superoxide dismutase activity of the captopril-iron complex. Mol Cell Biochem,1995,146:45-47.
6 Palley M S,Jacob H S,Cytochrome P-450 medicates tissue-damaging hydroxyl radical formation during reoxygenation of the kidney. Proc Natl Acad Sci, 1994,91:7002-7006.
7 Sponselk,HT,Alfrey AC,Hammond WS,et al. Effect of iron on renal tubular epithelial cells. Kidney Int,1996,50:436-444.
8 Iwata M, Zager RA.Myoglobin inhibits proliferation of cultured human proximal tubular (HK-2) cells. Kidney Int. 1996,50:796-804.
9 Zager RA,Burkhart K. Myoglobin toxicity in proximal human kidney cells: roles of Fe, Ca2+, H2O2,and terminal mitochondrial electron transport. Kidney Int, 1997,51:728-738.
10 Zager RA. Mitochondrial free radical production induccs lipid peroxidation during myohemoglobinuria. Kidney Int,1996,49:741-751.
11 Zager RA. Rhabdomyolysis and myohemoglo-
binuric acute renal failure. kidey Int. 1996,49:314-326.
12 Harris DCH, Ching Tay and Nankivell BJ. Lysosomal iron accumulation and tubular damage in rat puromycin nephrosis and ageing. Clin Exp Pharmacol Physiol, 1994,21:73-81.
13 Zhao-long Wu,Paller MS.Subacute iron loading enhances peroxidation product(MDA) of Kidney susceptibility to renal ischemia in rats.中国病理生理杂志,1995,11:4365-4368.
14 Trayolr A and Mayeux PR. Nitric oxide generation mediates lipid A-induced oxidant injury in renal proximal tubules. Arch Biochem Biophys,1997,338:129-135.
15 Luis Yu,Gengaro PE,Niederberger M, et al. Nitric oxide: a mediator in rat tubular hypoxia/reoxygenation injury. Proc Natl Acad Sci,1994,91:1691-1695.
16 Kin S, Sasaki T,Gu K,et al. The cytoprotective role of nitric oxide in ischemia-reperfusion injury in the rat kidney. Transplantation Proceedings,1995,27:754-756.
17 Agarwal A,Balla J,Balla G, et al. Renal tubular epithelial cells mimic endothelial cells upon exposure to oxidized LDL. Am J Physiol,1996,271:F814-F823.
18 Zager RA,Burkhart KM,Conrad DS, et al. Iron, heme oxygenase, and glutathione: effects on myohemoglobinuric proximal tubular injury. Kidney Int,1995,48:1624-1634.
19 Agarwal A, Balla J,Alam J,et al.Induction of heme oxygenase in toxic renal injury: a protective role in cisplatin nephrotoxicity in the rat. Kidney Int,1995,48:1298-1307.
20 Vogt Beth A,Alam J,Croatt AJ, et al. Acquired resistance to acute oxidative stress: possible role of heme oxygenase and ferrition. Lab Invest, 1995,72:474-483.