【网学提醒】:本文主要为网上学习者提供高中数学函教数学的思考和对策,希望对需要高中数学函教数学的思考和对策网友有所帮助,学习一下吧!
资料包括: 论文(62页44331字)
说明:摘 要:函数概念是近、现代数学的基石,是高中数学教学的主线,所以对高中生函数理解的调查研究可以作为数学概念理解研究的突破口.目前国内外关于函数概念学习的研究虽然已取得了多方面的成果,但是学生对函数概念理解困难还是个不争的事实,所以许多研究仍待进一步发展.
为了了解高中生对函数这一重要概念的理解状况,设计二份调查问卷,问题的选择是笔者在十余年的省一级重点中学教学经验的基础上,分析高中数学的课程标准和教学要求,参照国内外专家编制的有关函数概念研究的测试题,按本研究的目的精心挑选和改编而成.利用重测法及用公式分半信度法估计测验的信度,测出这份问卷可信度高.
调查的对象在两所中学随机选取,其中900人做问卷一,另外309人做问卷二,样本容量较大,较具代表性.针对问卷中出现的典型错误,为进一步摸清学生的思维活动过程,又根据学生数学成绩及答卷的典型性抽取6位学生进行访谈.实证调查的数据用Excel的统计函数进行平均数检验、方差分析和z检验,并绘制出统计图.同时结合访谈资料,得出研究结果:
⑴高中生对数学学习不自信.不同年级的学生对函数的认知水平呈迂回上升的形式,高三最高,其次是高一,最低是高二.但高三学生的函数测试成绩离散程度最大,分布最广.对数学不感兴趣的比例,高一、高二、高三呈明显递增趋势.高中生普遍认为从高一开始感觉数学难学.
⑵高中生忽视对函数本质特征的认识和理解,存在过分形式化的倾向.在判断一个对象是否为函数时更多的学生是根据函数概念在头脑中的表象,他们对函数本质特征的认识非常匮乏.当教师讲解某一个新问题时,学生更希望得知的是“具体如何去解这种问题”.
⑶高中生对生活中的函数关系不敏感.当函数关系以一个较为熟悉的生活现象出现时,学生对做出的答案显得明显不够自信.较多的学生认识不到存在于生活中的函数关系,用函数解决生活中问题的水平较低.
⑷高中生函数概念理解困难的原因:函数概念本身的复杂性,初高中教学衔接的失败,学生思维发展水平和数学语言理解能力不强,教学过程中某些环节不当等.
了解了高中生在学习函数概念时的认知困难,这为教师提供了函数教学的第一手材料,在今后的教学中应注意运用以下教学对策:(一)合理铺垫,循序渐进,促进初高中的函数教学良好衔接. (二)借鉴函数概念发展的历史.让学生明白函数概念发展的来龙去脉,学习数学家思考问题的方法和解决问题的途径,借鉴他们的经验和其中蕴涵的数学思想,从而更好地理解函数概念的本质.(三)运用元认知提问,真正体现教师的主导作用,真正发挥学生的主体意识;鼓励学生对学习过程进行反思,加强元认知教学.(四)“淡化形式,注重实质”,深刻把握函数概念的本质属性.(五)重视不同表示法之间的转换,正确理解和掌握函数性质,加深对函数思想的认识.(六)重视函数概念的实际应用.在教学中把概念应用到一些具体的实例中,与具体情境联系起来.
关键词 高中数学,函数教学,理解困难,教学对策
ABSTRACT
The concept of Function is the fundament in the contemporary mathematics and also a most important teaching content in the senior math. Although a variety of achievements have been made recently in the research of the concept learning of Function at home and abroad, there’s still a fact that students have difficulty understanding its concept. Therefore, there’s much to be studied further.
Two questionnaires are designed to get the information how students grasp the essential concept. The questions are made according to my teaching experience of over a decade in a province-class No. one key middle school, analyzing the curriculum standard and teaching requirements and referring to the related test problems provided by the experts from home and abroad. As a result of adopting the method of Retesting and Half-split Reliability used in teaching result analysis, there’s a high reliability.
The objects investigated are chosen randomly from two middle schools, 900 of whom are asked to finish the first set, 309 of whom to do the second one. With a big capacity, it should be representative. Focused on typical mistakes, six students are chosen to be interviewed according to their different levels of testing for a better understanding of their thinking and activity process.
The data are tested with Group Means, Analysis of Variance and Notability Test and the One Sample Chi—Square Test in Excel and a statistical graph is also made available. Conclusions are reached through a qualitative and quantitative analysis combined with information from interviews:
1. A lack of confidence in learning. There exist the huge differences in their understanding of Function at high school level: Seniors have a best understanding of function, the junior worst. The seniors show a lowest interest in learning the function; they also demonstrate an upward tendency in their indifference toward Function. Senior students generally regard it hard to learn maths from the very start of senior one.
2. An ignorance of cognition and understanding of the nature of Function. Students do not understand the nature of Function when confronted with the question of evaluating and judging what a function is. Students tend to know “how to solve the problem”, instead of reaching a true understanding what it really means.
3. An insensitivity toward the Function matter in daily lives. Students showed great hesitation when making use of Function to solve the problems in their real life. The majority of students show great indifference to function relationship in their work and life.
4. The reasons for above mentioned problems: the complication of Function concept itself; unsatisfactory transition from junior middle to senior high teaching; limit of students’ intellectual development; inadequate teaching methodology, etc.
With the first-hand knowledge gathered from the experiment, the following strategies are proposed to tackle the cognitive difficulties rampant in learning process:
a. A step-by-step method of teaching is encouraged to smooth the transition of learning Function from junior to senior middle school.
b. The history of function could facilitate students’ understanding of Function; skills and strategies adopted by other mathematicians could be made reference to for an essential understanding of the concept of Function.
c. A meta-cognition method is proposed to manifest the leading role teacher play in teaching. Students’ subjectivity as active learners is compounded to encourage a reflection of their learning process.
d. Neglect the form but emphasize the essence, the nature of the concept of Function should be understood deeply.
e. A deepened understanding of Function will be achieved by paying attention to shifting methods in teaching.
f. An emphasis on the application of Function. Function would be better understood in a more concrete situation.
KEY WORDS: high school math, Teaching of Function, difficulty in comprehension, teaching strategies
一 问题的提出
(一)研究的必要性
1. 函数概念是近、现代数学的基石
历史表明,重要数学概念对数学发展的作用是不可估量的,函数概念对数学发展的影响,可以说是贯穿古今、旷日持久.自17世纪近代数学产生以来,函数概念一直处于数学思想的核心位置.它不仅是近代数学的主要研究对象,而且自然科学的绝大部分都受到了函数关系的支配:分析学借助于刚刚诞生的函数概念,逐渐摆脱了几何的直观走上了代数化的道路,而这无论从其可操作性上,还是从其严密性上都进入了一个崭新的时代,于是分析学的许多分支诞生了,天文学、三角学、力学、物理学中的许多问题被描绘成各种各样的函数并被解决.函数的出现给数学注入了新鲜血液,导致了数学科学的蓬勃发展,数学中的许多概念或由函数派生,或由函数统率,或可归之为函数观点研究.
目录:摘 要 …………………………………………………………………………………Ⅰ
ABSTRACT ……………………………………………………………………………Ⅲ
一 问题的提出 …………………………………………………………………………1
(一)研究的必要性 ………………………………………………………………1
1.函数概念是近、现代数学的基石 ……………………………………………1
2.函数是高中数学教学的主线 ………………………………………………1
3.高中数学新课程函数内容的变革 …………………………………………1
4.函数是高中生学习的难点 …………………………………………………2
(二)国内外相关研究 ………………………………………………………………3
1.学生对函数的理解 …………………………………………………………3
2.函数的教学 …………………………………………………………………4
(三)研究的目标 ……………………………………………………………………5
二 研究的理论基础 ……………………………………………………………………6
(一)关于数学理解的理论 …………………………………………………………6
(二)关于建构主义的学习理论 ……………………………………………………6
(三)关于元认知理论 ………………………………………………………………8
三 高中生函数学习的实证调查与分析 ………………………………………………9
(一)研究方法 ………………………………………………………………………9
(二)问卷调查数据统计与分析 …………………………………………………10
1.高中生函数认知发展水平的总体分析 ……………………………………10
2.高中生对函数定义的理解 …………………………………………………12
3.高中生对函数表示方法的理解 ……………………………………………13
4.高中生函数概念及性质的应用水平 ………………………………………14
(三)访谈结果统计和分析 ………………………………………………………15
1.被试访谈结果初步统计和分析 ……………………………………………15
2.访谈学生的学习策略典型错误分析 ………………………………………15
(四)对调查结果的反思 …………………………………………………………16
1.高中生对数学学习不自信 …………………………………………………16
2.高中生对函数本质特征的认识不深刻 ……………………………………17
3.高中生对生活中的函数关系不敏感 ………………………………………17
4.高中生函数概念理解困难的原因分析 ……………………………………18
四 克服高中生函数概念理解困难的教学对策 ………………………………………21
(一)促进初高中的函数教学良好衔接 …………………………………………21
(二)借鉴函数概念发展的历史 …………………………………………………21
(三)加强元认知教学,培养学生主动学习 ……………………………………22
(四)“淡化形式,注重实质” ……………………………………………………23
(五)正确掌握函数的表示法和性质 ……………………………………………24
(六)重视函数概念的实际应用 …………………………………………………26
五 函数教学设计案例与评析 ………………………………………………………28
(一)《函数的单调性》教学设计 …………………………………………………28
(二)《用二分法求方程的近似解》教学设计 ……………………………………31
(三)评析 …………………………………………………………………………35
参考文献 ………………………………………………………………………………36
附录1 …………………………………………………………………………………38
附录2 …………………………………………………………………………………41
附录3 …………………………………………………………………………………44
致 谢 …………………………………………………………………………………46
攻读学位期间发表的学术论文目录 …………………………………………………47
参考文献:中文文献
李吉宝.有关函数概念教学的若干问题[J] .数学教育学报,2003,12(2):95-98
王尚志,张饴慈,李延林.课程标准的设计思路[R].2006年暑假高中数学新课程国家级培训
朱文芳.函数概念学习的心理分析[J] .数学教育学报1999,8(4):23-25,44
朱文芳,林崇德.初中生函数概念发展的研究[J].心理发展与教育,2001,4:40-46
曾国光.中学生函数概念认知发展研究[J]. 2002,数学教育学报,11(2):99-102
王智明.中学函数课程与教学初探[D]:[硕士学位论文].保存地点:南京师范大学,2003
汤服成,王兄.图式理论与函数概念学习[J].辽宁师范大学学报(自然科学版), 2001,24(3):263-265
贾丕珠.函数学习中的六个认知层次[J].数学教育学报,2004,13 (3):79-81
李士锜.PME:数学教育心理[M].上海:华东师范大学出版社,2001.64,80-87
郑毓信,梁贯成.认知科学建构主义与数学教育——数学学习心理学的现代研究[M].第二版.上海:上海教育出版社,2002
陈琼,翁庆凯.试论数学学习中的理解学习[J].数学教育学报,2003, 12(1):17-19
张奠宙,李士琦,李俊.数学教育学导论[M].北京:高等教育出版社,2003
张奠宙,宋乃庆.数学教育概论[M].北京:高等教育出版社,2004
张大均.教育心理学[M].第二版.北京:人民教育出版社,2004:250-251
[15] 陈向明.教师如何做质的研究[M].北京:科学教育出版社,2001
[16] 王孝玲.教育统计学[M].修订二版.上海:华东师范大学出版社,2001
[17] 蔡春晖.多元智能数学教学方式实验初探[J].数学通报, 2005(1):46-50
[18] 曹才翰等.数学教育心理学[M].北京师范大学出版社,1999
[19] 陈蓓.函数概念的发展与比较[J].数学通讯,2005(7):1-3
[20] 陈国正.高中函数定义的商榷[J].数学通报,1999(9):10-11
[21] 陈志云,邓乐斌.函数概念与中学数学[J].高等函授学报,1999(5):6-10
[22] 杜玮.函数概念的发展历程[J] .濮阳教育学院学报,2003,16 (4):10-11
[23] 何小亚.全日制义务教育阶段数学课程标准(试验稿)刍议[J].数学教育学报,2003,12 (1):45-49
[24] 郝妍琴.对高中生函数概念理解的调查研究[D]:[硕士学位论文].保存地点:华东师范大学,2006
[25] 黄燕玲,喻平.对数学理解的再认识[J].数学教育学报,2002,11(3):40- 43
[26] 孔凡海.函数的两种概念与教学[J].中学数学教学参考,2002(10):15-17
[27] 李善良.数学概念学习中的错误分析[J].数学教育学报,2002,11(3):6-11
[28] 刘静.函数的学习困难与课程设计[J].课程•教材•教法,2006,26(4):45-48
[29] 陆书环.美国中学数学教材中的函数概念特点分析[J].中学数学,1999(3):6-8
[30] 孙熙椿.从现代数学看中学数学[M].北京:中国林业出版社,1991
[31] 孙晓庆.数学课程发展的国际视野[M].北京:高等教育出版社,2003
[32] 涂荣豹.谈提高对数学教学的认识[J].中学数学教学参考.2006(1-2)
[33] 汪晓勤,韩祥临.中学数学中的数学史[M].北京:科学出版社,2002
[34] 徐斌艳.数学教育展望[[M].上海:华东师范大学出版社,2001
[35] 曾峥.关于函数概念及其教学的整体思考[J].肇庆学院学报,2001,22(2):61-63
[36] 张奠宙,邹一心.现代数学与中学数学[M].上海:上海教育出版社,1991
[37] 赵玲云.中职学生函数概念认知发展的研究:[硕士学位论文].保存地点:首都师范大学,2004
[38] 朱水根,王延文.中学数学教学导论[M].北京:教育科学出版社,2001
[39] 郑毓信.数学教育:从理论到实践[M].上海:上海教育出版社,2001
[40] 鲍建生,王洁,顾泠沅.课堂教学视频案例的研究与制作[M].上海:上海教育出版社,2005
[41] 马复.设计合理的数学教学[M].北京:高等教育出版社,2003
英文文献
T. J.Cooney & Wilson M. R. 1993. Teachers’ thinking about functions: historical and research perspectives. In: T. A. Romberg, et. al. (eds.). Integrating Research on the Graphical Representation of Function. Hillsdale: Lawrence Erlbaum Association Publishers, 131-158.
J.P.Ponte.1993.The history of concept of function and some educational implications. Mathematics Educator, 3(2).
S.Vinner.1983.Concept definition, concept image and the notion of function. International Journal of Mathematics Education in Science & Technology, 14 (3): 293-305
S.Vinner & T.Dreyfus.1989. Images and definitions for the concept of function. Journal for Research in Mathematics Education. 20(4): 356-366
Ed Dubinsky.1992.Development of the process conception of function, Educational Studies in Mathematics 23,247—285
Ruhama Even.1993.’Subject---matter knowledge and pedagogical content knowledge: prospective secondary teachers and the function concept’, Journal for Research in Mathematics Education 1993,vol.24,No.2,94--116
M. A.Malik. 1980. Historical and pedagogical aspects of the definition of function. International Journal of Mathematics Education in Science & Technology, 11: 489-492
D.Tall. 1992. The transition to advanced mathematical thinking: functions, limits, infinity, and proof. In: Grouws, D. A. (ed.) Handbook of Research on Mathematics teaching and Learning. New York: Macmillan Publishing Company. 495-501
F. A.Norman. 1993. Integrating research on teachers’ knowledge of functions and their graphs. In: T. A. Romberg, et. al. (eds.). Integrating Research on the Graphical Representation of Function. Hillsdale: Lawrence Erlbaum Association Publishers, 159-187
L. L.Clement. 2001. What do students really know about functions? Mathematics teacher, 94(9): 745-748
K.Collis.1986.Learning intellectual skills and school mathematics: A Psychological Viewpoint, Proceedings of the 10th International Conference for the Psychology of mathematics Education ,Vo1.1.London.
J.H.Flavell.1979.Meta-Cognition and Cognitive Monitoring: A New Area of Cognitive-Developmental Inquiry. American Psychologist, 34