摘 要:数学课题探究教学是指在教师的指导下,围绕着某一课题,运用探究的方法主动获取数学知识,独立地解决数学问题,培养科学精神和创造性思维能力的一种实践活动.它具有内容的开放性和方法的多样性等特点.其内容主要有数学基本概念和规律、数学中的综合性问题、现实中的数学问题以及科学前沿中的数学问题等.数学课题探究教学包括教师示范指导和诱导、学生探究、师生共探三个基本环节.
为了检验在高中数学课堂上运用课题探究教学模式对高中数学教学的影响,笔者开展了实验研究并得出了以下结论:
在高中数学课堂中运用课题探究课堂教学模式进行教学,能够培养学生的数学学习趣以及积极主动的探究、合作意识.使之形成良好的数学学习品质,促进学习成绩的进步和数学能力、创新能力的提高.
关键词: 数学课题 探究教学 高中数学教学 自主学习 合作探究 建构主义 数学能力 课堂教学 教学模式 实验研究
Abstract: Inquiry teaching of mathematics research topics is a kinds of practical activity, in which students conduct research about one topic under the guidance of teachers so as to gain knowledge actively, deal with mathematics problems independently, cultivate scientific spirit and creative thinking and contain mathematics basic concepts and regulations, the integrated problems of mathematics and mathematical problems in the reality, the mathematical problems in the frontier of science and so on.
The inquiry teaching of mathematics research topics involves teacher’s guidance and induction, student’s inquiry and inquiry of teachers together with students.
Use the subject to probe into the impact on mathematics teaching of high school of the teaching mode in order to examine in the mathematics classroom of high school, I studied and drew the following conclusion after launching the experiment: Use the subject to probe into the classroom instruction mode and carry on teaching in the mathematics classroom of high school, can train students’ mathematics to study the interest and positive probing into, cooperative consciousness. Make its good mathematics of forming study quality, promote the improvement of progress and mathematics ability,innovation ability of the school grade.
Keyword: Mathematics subject Probe into teaching Mathematics teaching of high school Study independently Cooperate in probing into Build the doctrine of constructing Mathematics ability Classroom instruction Teaching mode Experiment research
前 言
随着数学教学现代化的进程,《普通高中数学课程标准(实验)》(简称《标准》)应运而生,这为我们加快数学课程改革指明了方向.《标准》要求在数学教学中实行“自主探索、合作交流”.课堂教学再也不是学生的“死读”与教师的“硬灌”,而是展开对数学问题的探究与发现,鼓励学生对课本所述与教师所讲应该持“怀疑”的态度,按自已的个性,从自已的角度彻底搞明白“什么?怎么?为什么?”
例如,在《集合》的教学中,学生对“空集”的有关问题提出质疑,为什么要“把不含任何元素的集合叫做空集?”这类问题是笔者在课堂教学中经常碰到的.若是简单地用“这是规定”来搪塞,学生是不会满意的,也失去了一次发展学生思维的良机.放手让学生去探究、去争论,在此过程中,笔者适当地给予启发、提示,结果学生常常了联想到许多类似的问题:如用幂的定义来看“a0,a-2”,它们简直“不是个东西”,但规定了它们的含义之后,指数运算就适用于更大的范围,使数学理论更加顺畅、和谐与系统.基于此,空集的有关规定才能被学生所接受和理解.